An empirical evaluation of electronic annotation tools for Twitter data
Despite a growing number of natural language processing shared-tasks dedicated to the use of Twitter data, there is currently no ad-hoc annotation tool for the purpose. During the 6th edition of Biomedical Linked Annotation Hackathon (BLAH), after a short review of 19 generic annotation tools, we ad...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BioMed Central
2020-06-01
|
Series: | Genomics & Informatics |
Subjects: | |
Online Access: | http://genominfo.org/upload/pdf/gi-2020-18-2-e24.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832570756138008576 |
---|---|
author | Davy Weissenbacher Karen O'Connor Aiko T. Hiraki Jin-Dong Kim Graciela Gonzalez-Hernandez |
author_facet | Davy Weissenbacher Karen O'Connor Aiko T. Hiraki Jin-Dong Kim Graciela Gonzalez-Hernandez |
author_sort | Davy Weissenbacher |
collection | DOAJ |
description | Despite a growing number of natural language processing shared-tasks dedicated to the use of Twitter data, there is currently no ad-hoc annotation tool for the purpose. During the 6th edition of Biomedical Linked Annotation Hackathon (BLAH), after a short review of 19 generic annotation tools, we adapted GATE and TextAE for annotating Twitter timelines. Although none of the tools reviewed allow the annotation of all information inherent of Twitter timelines, a few may be suitable provided the willingness by annotators to compromise on some functionality. |
format | Article |
id | doaj-art-1db125db8b374835a1418dd4ce628be2 |
institution | Kabale University |
issn | 2234-0742 |
language | English |
publishDate | 2020-06-01 |
publisher | BioMed Central |
record_format | Article |
series | Genomics & Informatics |
spelling | doaj-art-1db125db8b374835a1418dd4ce628be22025-02-02T14:16:10ZengBioMed CentralGenomics & Informatics2234-07422020-06-01182e2410.5808/GI.2020.18.2.e24612An empirical evaluation of electronic annotation tools for Twitter dataDavy Weissenbacher0Karen O'Connor1Aiko T. Hiraki2Jin-Dong Kim3Graciela Gonzalez-Hernandez4 Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Database Center for Life Science, Research Organization of Information and Systems, Kashiwa, Chiba 277-0871, Japan Database Center for Life Science, Research Organization of Information and Systems, Kashiwa, Chiba 277-0871, Japan Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USADespite a growing number of natural language processing shared-tasks dedicated to the use of Twitter data, there is currently no ad-hoc annotation tool for the purpose. During the 6th edition of Biomedical Linked Annotation Hackathon (BLAH), after a short review of 19 generic annotation tools, we adapted GATE and TextAE for annotating Twitter timelines. Although none of the tools reviewed allow the annotation of all information inherent of Twitter timelines, a few may be suitable provided the willingness by annotators to compromise on some functionality.http://genominfo.org/upload/pdf/gi-2020-18-2-e24.pdfannotation toolnatural language processingsocial media mining |
spellingShingle | Davy Weissenbacher Karen O'Connor Aiko T. Hiraki Jin-Dong Kim Graciela Gonzalez-Hernandez An empirical evaluation of electronic annotation tools for Twitter data Genomics & Informatics annotation tool natural language processing social media mining |
title | An empirical evaluation of electronic annotation tools for Twitter data |
title_full | An empirical evaluation of electronic annotation tools for Twitter data |
title_fullStr | An empirical evaluation of electronic annotation tools for Twitter data |
title_full_unstemmed | An empirical evaluation of electronic annotation tools for Twitter data |
title_short | An empirical evaluation of electronic annotation tools for Twitter data |
title_sort | empirical evaluation of electronic annotation tools for twitter data |
topic | annotation tool natural language processing social media mining |
url | http://genominfo.org/upload/pdf/gi-2020-18-2-e24.pdf |
work_keys_str_mv | AT davyweissenbacher anempiricalevaluationofelectronicannotationtoolsfortwitterdata AT karenoconnor anempiricalevaluationofelectronicannotationtoolsfortwitterdata AT aikothiraki anempiricalevaluationofelectronicannotationtoolsfortwitterdata AT jindongkim anempiricalevaluationofelectronicannotationtoolsfortwitterdata AT gracielagonzalezhernandez anempiricalevaluationofelectronicannotationtoolsfortwitterdata AT davyweissenbacher empiricalevaluationofelectronicannotationtoolsfortwitterdata AT karenoconnor empiricalevaluationofelectronicannotationtoolsfortwitterdata AT aikothiraki empiricalevaluationofelectronicannotationtoolsfortwitterdata AT jindongkim empiricalevaluationofelectronicannotationtoolsfortwitterdata AT gracielagonzalezhernandez empiricalevaluationofelectronicannotationtoolsfortwitterdata |