An empirical evaluation of electronic annotation tools for Twitter data

Despite a growing number of natural language processing shared-tasks dedicated to the use of Twitter data, there is currently no ad-hoc annotation tool for the purpose. During the 6th edition of Biomedical Linked Annotation Hackathon (BLAH), after a short review of 19 generic annotation tools, we ad...

Full description

Saved in:
Bibliographic Details
Main Authors: Davy Weissenbacher, Karen O'Connor, Aiko T. Hiraki, Jin-Dong Kim, Graciela Gonzalez-Hernandez
Format: Article
Language:English
Published: BioMed Central 2020-06-01
Series:Genomics & Informatics
Subjects:
Online Access:http://genominfo.org/upload/pdf/gi-2020-18-2-e24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832570756138008576
author Davy Weissenbacher
Karen O'Connor
Aiko T. Hiraki
Jin-Dong Kim
Graciela Gonzalez-Hernandez
author_facet Davy Weissenbacher
Karen O'Connor
Aiko T. Hiraki
Jin-Dong Kim
Graciela Gonzalez-Hernandez
author_sort Davy Weissenbacher
collection DOAJ
description Despite a growing number of natural language processing shared-tasks dedicated to the use of Twitter data, there is currently no ad-hoc annotation tool for the purpose. During the 6th edition of Biomedical Linked Annotation Hackathon (BLAH), after a short review of 19 generic annotation tools, we adapted GATE and TextAE for annotating Twitter timelines. Although none of the tools reviewed allow the annotation of all information inherent of Twitter timelines, a few may be suitable provided the willingness by annotators to compromise on some functionality.
format Article
id doaj-art-1db125db8b374835a1418dd4ce628be2
institution Kabale University
issn 2234-0742
language English
publishDate 2020-06-01
publisher BioMed Central
record_format Article
series Genomics & Informatics
spelling doaj-art-1db125db8b374835a1418dd4ce628be22025-02-02T14:16:10ZengBioMed CentralGenomics & Informatics2234-07422020-06-01182e2410.5808/GI.2020.18.2.e24612An empirical evaluation of electronic annotation tools for Twitter dataDavy Weissenbacher0Karen O'Connor1Aiko T. Hiraki2Jin-Dong Kim3Graciela Gonzalez-Hernandez4 Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Database Center for Life Science, Research Organization of Information and Systems, Kashiwa, Chiba 277-0871, Japan Database Center for Life Science, Research Organization of Information and Systems, Kashiwa, Chiba 277-0871, Japan Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USADespite a growing number of natural language processing shared-tasks dedicated to the use of Twitter data, there is currently no ad-hoc annotation tool for the purpose. During the 6th edition of Biomedical Linked Annotation Hackathon (BLAH), after a short review of 19 generic annotation tools, we adapted GATE and TextAE for annotating Twitter timelines. Although none of the tools reviewed allow the annotation of all information inherent of Twitter timelines, a few may be suitable provided the willingness by annotators to compromise on some functionality.http://genominfo.org/upload/pdf/gi-2020-18-2-e24.pdfannotation toolnatural language processingsocial media mining
spellingShingle Davy Weissenbacher
Karen O'Connor
Aiko T. Hiraki
Jin-Dong Kim
Graciela Gonzalez-Hernandez
An empirical evaluation of electronic annotation tools for Twitter data
Genomics & Informatics
annotation tool
natural language processing
social media mining
title An empirical evaluation of electronic annotation tools for Twitter data
title_full An empirical evaluation of electronic annotation tools for Twitter data
title_fullStr An empirical evaluation of electronic annotation tools for Twitter data
title_full_unstemmed An empirical evaluation of electronic annotation tools for Twitter data
title_short An empirical evaluation of electronic annotation tools for Twitter data
title_sort empirical evaluation of electronic annotation tools for twitter data
topic annotation tool
natural language processing
social media mining
url http://genominfo.org/upload/pdf/gi-2020-18-2-e24.pdf
work_keys_str_mv AT davyweissenbacher anempiricalevaluationofelectronicannotationtoolsfortwitterdata
AT karenoconnor anempiricalevaluationofelectronicannotationtoolsfortwitterdata
AT aikothiraki anempiricalevaluationofelectronicannotationtoolsfortwitterdata
AT jindongkim anempiricalevaluationofelectronicannotationtoolsfortwitterdata
AT gracielagonzalezhernandez anempiricalevaluationofelectronicannotationtoolsfortwitterdata
AT davyweissenbacher empiricalevaluationofelectronicannotationtoolsfortwitterdata
AT karenoconnor empiricalevaluationofelectronicannotationtoolsfortwitterdata
AT aikothiraki empiricalevaluationofelectronicannotationtoolsfortwitterdata
AT jindongkim empiricalevaluationofelectronicannotationtoolsfortwitterdata
AT gracielagonzalezhernandez empiricalevaluationofelectronicannotationtoolsfortwitterdata