Fast Pedestrian Recognition Based on Multisensor Fusion

A fast pedestrian recognition algorithm based on multisensor fusion is presented in this paper. Firstly, potential pedestrian locations are estimated by laser radar scanning in the world coordinates, and then their corresponding candidate regions in the image are located by camera calibration and th...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongyu Hu, Zhaowei Qu, Zhihui Li, Jinhui Hu, Fulu Wei
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2012/318305
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fast pedestrian recognition algorithm based on multisensor fusion is presented in this paper. Firstly, potential pedestrian locations are estimated by laser radar scanning in the world coordinates, and then their corresponding candidate regions in the image are located by camera calibration and the perspective mapping model. For avoiding time consuming in the training and recognition process caused by large numbers of feature vector dimensions, region of interest-based integral histograms of oriented gradients (ROI-IHOG) feature extraction method is proposed later. A support vector machine (SVM) classifier is trained by a novel pedestrian sample dataset which adapt to the urban road environment for online recognition. Finally, we test the validity of the proposed approach with several video sequences from realistic urban road scenarios. Reliable and timewise performances are shown based on our multisensor fusing method.
ISSN:1026-0226
1607-887X