Fractional Sobolev Spaces via Riemann-Liouville Derivatives

Using Riemann-Liouville derivatives, we introduce fractional Sobolev spaces, characterize them, define weak fractional derivatives, and show that they coincide with the Riemann-Liouville ones. Next, we prove equivalence of some norms in the introduced spaces and derive their completeness, reflexivit...

Full description

Saved in:
Bibliographic Details
Main Authors: Dariusz Idczak, Stanisław Walczak
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2013/128043
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550260263616512
author Dariusz Idczak
Stanisław Walczak
author_facet Dariusz Idczak
Stanisław Walczak
author_sort Dariusz Idczak
collection DOAJ
description Using Riemann-Liouville derivatives, we introduce fractional Sobolev spaces, characterize them, define weak fractional derivatives, and show that they coincide with the Riemann-Liouville ones. Next, we prove equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, separability, and compactness of some imbeddings. An application to boundary value problems is given as well.
format Article
id doaj-art-1d022df37701488781c068f60fea35e4
institution Kabale University
issn 0972-6802
1758-4965
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-1d022df37701488781c068f60fea35e42025-02-03T06:07:07ZengWileyJournal of Function Spaces and Applications0972-68021758-49652013-01-01201310.1155/2013/128043128043Fractional Sobolev Spaces via Riemann-Liouville DerivativesDariusz Idczak0Stanisław Walczak1Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, PolandFaculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, PolandUsing Riemann-Liouville derivatives, we introduce fractional Sobolev spaces, characterize them, define weak fractional derivatives, and show that they coincide with the Riemann-Liouville ones. Next, we prove equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, separability, and compactness of some imbeddings. An application to boundary value problems is given as well.http://dx.doi.org/10.1155/2013/128043
spellingShingle Dariusz Idczak
Stanisław Walczak
Fractional Sobolev Spaces via Riemann-Liouville Derivatives
Journal of Function Spaces and Applications
title Fractional Sobolev Spaces via Riemann-Liouville Derivatives
title_full Fractional Sobolev Spaces via Riemann-Liouville Derivatives
title_fullStr Fractional Sobolev Spaces via Riemann-Liouville Derivatives
title_full_unstemmed Fractional Sobolev Spaces via Riemann-Liouville Derivatives
title_short Fractional Sobolev Spaces via Riemann-Liouville Derivatives
title_sort fractional sobolev spaces via riemann liouville derivatives
url http://dx.doi.org/10.1155/2013/128043
work_keys_str_mv AT dariuszidczak fractionalsobolevspacesviariemannliouvillederivatives
AT stanisławwalczak fractionalsobolevspacesviariemannliouvillederivatives