Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targets
This study investigates viscous and quantum effects on the collective behavior of surface plasmons on various metals, such as the conventional surface magnetoplasmons and the acoustic surface magnetoplasmons, under the modulations of magnetic field and particle–surface interactions. We calculate wak...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-03-01
|
| Series: | Results in Physics |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2211379725000506 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850191314048516096 |
|---|---|
| author | Ya Zhang Wei Jiang |
| author_facet | Ya Zhang Wei Jiang |
| author_sort | Ya Zhang |
| collection | DOAJ |
| description | This study investigates viscous and quantum effects on the collective behavior of surface plasmons on various metals, such as the conventional surface magnetoplasmons and the acoustic surface magnetoplasmons, under the modulations of magnetic field and particle–surface interactions. We calculate wake potential, plasmon density, and stopping power based on a viscous quantum hydrodynamic model. It is observed that viscous effects tend to lower and broaden the peaks of stopping power, wake potential and plasmon density oscillations. Quantum effects modify the position and shape of these peaks, which might be essential for optimizing conditions in processes like materials engineering. The coupling of viscous and quantum effects significantly impacts the excitation of surface magnetoplasmons, with notable variations across different metals, indicating that material properties influence the plasmonic behavior. |
| format | Article |
| id | doaj-art-1ca33db458954c09af96064f42e64ec6 |
| institution | OA Journals |
| issn | 2211-3797 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | Elsevier |
| record_format | Article |
| series | Results in Physics |
| spelling | doaj-art-1ca33db458954c09af96064f42e64ec62025-08-20T02:14:57ZengElsevierResults in Physics2211-37972025-03-017010815610.1016/j.rinp.2025.108156Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targetsYa Zhang0Wei Jiang1Department of Physics, Wuhan University of Technology, Wuhan, 430070, Hubei, ChinaSchool of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China; Corresponding author.This study investigates viscous and quantum effects on the collective behavior of surface plasmons on various metals, such as the conventional surface magnetoplasmons and the acoustic surface magnetoplasmons, under the modulations of magnetic field and particle–surface interactions. We calculate wake potential, plasmon density, and stopping power based on a viscous quantum hydrodynamic model. It is observed that viscous effects tend to lower and broaden the peaks of stopping power, wake potential and plasmon density oscillations. Quantum effects modify the position and shape of these peaks, which might be essential for optimizing conditions in processes like materials engineering. The coupling of viscous and quantum effects significantly impacts the excitation of surface magnetoplasmons, with notable variations across different metals, indicating that material properties influence the plasmonic behavior.http://www.sciencedirect.com/science/article/pii/S2211379725000506Quantum hydrodynamic modelStopping powerSurface magnetoplasmonViscous effectQuantum effectParticle–surface interaction |
| spellingShingle | Ya Zhang Wei Jiang Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targets Results in Physics Quantum hydrodynamic model Stopping power Surface magnetoplasmon Viscous effect Quantum effect Particle–surface interaction |
| title | Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targets |
| title_full | Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targets |
| title_fullStr | Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targets |
| title_full_unstemmed | Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targets |
| title_short | Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targets |
| title_sort | stopping power of surface magnetoplasmons with viscous and quantum effects in different two dimensional targets |
| topic | Quantum hydrodynamic model Stopping power Surface magnetoplasmon Viscous effect Quantum effect Particle–surface interaction |
| url | http://www.sciencedirect.com/science/article/pii/S2211379725000506 |
| work_keys_str_mv | AT yazhang stoppingpowerofsurfacemagnetoplasmonswithviscousandquantumeffectsindifferenttwodimensionaltargets AT weijiang stoppingpowerofsurfacemagnetoplasmonswithviscousandquantumeffectsindifferenttwodimensionaltargets |