Wheelset-Bearing Fault Detection Using Adaptive Convolution Sparse Representation
Wheelset bearings are crucial mechanical components of high-speed trains. Wheelset-bearing fault detection is of great significance to ensure the safety of high-speed train service. Convolution sparse representations (CSRs) provide an excellent framework for extracting impulse responses induced by b...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2019/7198693 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wheelset bearings are crucial mechanical components of high-speed trains. Wheelset-bearing fault detection is of great significance to ensure the safety of high-speed train service. Convolution sparse representations (CSRs) provide an excellent framework for extracting impulse responses induced by bearing faults. However, the performance of CSR on extracting impulse responses is fairly sensitive to inappropriate selection of method-related parameters, and a convolution model for representing the impulse responses has not been discussed. In view of these two unsolved problems, a convolutional representation model of the impulse response series is developed. A novel fault detection method, named adaptive CSR (ACSR), is then proposed based on combinations of CSR and methods for estimating three parameters related to CSR. Finally, the effectiveness of the proposed ACSR method is validated via simulation, bench testing, and a real-life running test employing a high-speed train. |
---|---|
ISSN: | 1070-9622 1875-9203 |