Wheelset-Bearing Fault Detection Using Adaptive Convolution Sparse Representation

Wheelset bearings are crucial mechanical components of high-speed trains. Wheelset-bearing fault detection is of great significance to ensure the safety of high-speed train service. Convolution sparse representations (CSRs) provide an excellent framework for extracting impulse responses induced by b...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianming Ding, Zhaoheng Zhang, Yanli Yin
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/7198693
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wheelset bearings are crucial mechanical components of high-speed trains. Wheelset-bearing fault detection is of great significance to ensure the safety of high-speed train service. Convolution sparse representations (CSRs) provide an excellent framework for extracting impulse responses induced by bearing faults. However, the performance of CSR on extracting impulse responses is fairly sensitive to inappropriate selection of method-related parameters, and a convolution model for representing the impulse responses has not been discussed. In view of these two unsolved problems, a convolutional representation model of the impulse response series is developed. A novel fault detection method, named adaptive CSR (ACSR), is then proposed based on combinations of CSR and methods for estimating three parameters related to CSR. Finally, the effectiveness of the proposed ACSR method is validated via simulation, bench testing, and a real-life running test employing a high-speed train.
ISSN:1070-9622
1875-9203