Pathfinding for Mobile Robot Navigation by Exerting the Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) Iterative Approach via the Laplacian Operator
Mobile robots are often in a situation where they need to find a bump-free path or navigation in their environment from any starting to a specific target point. Within this study, improving the navigation problem of a mobile robot iteratively by using a numerical method based on the potential field...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Modelling and Simulation in Engineering |
Online Access: | http://dx.doi.org/10.1155/2022/9388146 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mobile robots are often in a situation where they need to find a bump-free path or navigation in their environment from any starting to a specific target point. Within this study, improving the navigation problem of a mobile robot iteratively by using a numerical method based on the potential field method is one of the main aims. This potential field will lean on the use of Laplace’s equation to restrain the formation of a potential function across regions within the mobile robot configuration area. The present paper proposed a Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) approach to improve the pathfinding of mobile robots in a given environment. The experiment shows that, by using a finite difference method, it is capable of producing an optimal path and creating a smooth path between the starting and target point. The results of the simulation also show that this numerical approach works more rapidly and provides a smoother/clearer direction than the previous study. |
---|---|
ISSN: | 1687-5605 |