A Time-Discontinuous Galerkin Finite Element Method for the Solution of Impact Problem of Gas-Saturated Coal

Based on the general Biot theory of saturated porous media, a modified time-discontinuous Galerkin finite element method (MDGFEM) is presented to simulate the structural dynamics and wave propagation problems of gas-saturated coal subjected to impact loading. Numerical results of one dimension and t...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingfei Zhang, Deyong Guo, Wenhua Wu, Pan Guo
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/8845056
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the general Biot theory of saturated porous media, a modified time-discontinuous Galerkin finite element method (MDGFEM) is presented to simulate the structural dynamics and wave propagation problems of gas-saturated coal subjected to impact loading. Numerical results of one dimension and two dimensions show that the present MDGFEM possesses better abilities and provides much more accurate solutions than the traditional Newmark method and previous DGFEM for the impact problem. It can effectively capture the discontinuities of the wave and filter out the effects of spurious numerical oscillation induced by high-frequency impulsive load. The results can provide a technological basis for the research of the prevention of coal and gas dynamic disasters under deep mining. And the method could be useful for the further numerical research of coal-rock-gas coupling problems and coal-gas-heat coupling problems subjected to impact loading.
ISSN:1070-9622
1875-9203