Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory

We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3) in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Falko Schmidt, Marc Landmann, Eva Rauls, Nicola Argiolas, Simone Sanna, W. G. Schmidt, Arno Schindlmayr
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2017/3981317
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3) in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of KNbO3. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.
ISSN:1687-8434
1687-8442