Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window

Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource sta...

Full description

Saved in:
Bibliographic Details
Main Authors: Bethany Davies, Thomas Beauchamp, Gayane Vardoyan, Stephanie Wehner
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Transactions on Quantum Engineering
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10417724/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832583963124695040
author Bethany Davies
Thomas Beauchamp
Gayane Vardoyan
Stephanie Wehner
author_facet Bethany Davies
Thomas Beauchamp
Gayane Vardoyan
Stephanie Wehner
author_sort Bethany Davies
collection DOAJ
description Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability <inline-formula><tex-math notation="LaTeX">$p$</tex-math></inline-formula> in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after <inline-formula><tex-math notation="LaTeX">$w$</tex-math></inline-formula> time steps. Let <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula> be the number of desired resource states required by a protocol. We characterize the probability distribution <inline-formula><tex-math notation="LaTeX">$X_{(w,s)}$</tex-math></inline-formula> of the ages of the quantum resource states, once <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula> states have been generated in a window <inline-formula><tex-math notation="LaTeX">$w$</tex-math></inline-formula>. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula> quantum resources. We also give exact solutions for the first and second moments of the waiting time <inline-formula><tex-math notation="LaTeX">$\tau _{(w,s)}$</tex-math></inline-formula> until <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula> resources are produced within a window <inline-formula><tex-math notation="LaTeX">$w$</tex-math></inline-formula>, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time <inline-formula><tex-math notation="LaTeX">$\mathbb {E}(\tau _{(w,s)})$</tex-math></inline-formula> and the distribution <inline-formula><tex-math notation="LaTeX">$X_{(w,s)}$</tex-math></inline-formula>, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer <inline-formula><tex-math notation="LaTeX">$w$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$p$</tex-math></inline-formula> to optimize the rate of successful protocol execution.
format Article
id doaj-art-1bb4800d063e469a8cf8faca43e6aab9
institution Kabale University
issn 2689-1808
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Transactions on Quantum Engineering
spelling doaj-art-1bb4800d063e469a8cf8faca43e6aab92025-01-28T00:02:31ZengIEEEIEEE Transactions on Quantum Engineering2689-18082024-01-01512010.1109/TQE.2024.335867410417724Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time WindowBethany Davies0https://orcid.org/0009-0006-5422-1388Thomas Beauchamp1https://orcid.org/0000-0001-7480-3728Gayane Vardoyan2https://orcid.org/0000-0002-6005-8138Stephanie Wehner3https://orcid.org/0000-0002-8433-0730QuTech, Delft University of Technology, Delft, The NetherlandsQuTech, Delft University of Technology, Delft, The NetherlandsQuTech, Delft University of Technology, Delft, The NetherlandsQuTech, Delft University of Technology, Delft, The NetherlandsQuantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability <inline-formula><tex-math notation="LaTeX">$p$</tex-math></inline-formula> in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after <inline-formula><tex-math notation="LaTeX">$w$</tex-math></inline-formula> time steps. Let <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula> be the number of desired resource states required by a protocol. We characterize the probability distribution <inline-formula><tex-math notation="LaTeX">$X_{(w,s)}$</tex-math></inline-formula> of the ages of the quantum resource states, once <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula> states have been generated in a window <inline-formula><tex-math notation="LaTeX">$w$</tex-math></inline-formula>. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula> quantum resources. We also give exact solutions for the first and second moments of the waiting time <inline-formula><tex-math notation="LaTeX">$\tau _{(w,s)}$</tex-math></inline-formula> until <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula> resources are produced within a window <inline-formula><tex-math notation="LaTeX">$w$</tex-math></inline-formula>, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time <inline-formula><tex-math notation="LaTeX">$\mathbb {E}(\tau _{(w,s)})$</tex-math></inline-formula> and the distribution <inline-formula><tex-math notation="LaTeX">$X_{(w,s)}$</tex-math></inline-formula>, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer <inline-formula><tex-math notation="LaTeX">$w$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$p$</tex-math></inline-formula> to optimize the rate of successful protocol execution.https://ieeexplore.ieee.org/document/10417724/Performance analysisquantum networksscan statistics
spellingShingle Bethany Davies
Thomas Beauchamp
Gayane Vardoyan
Stephanie Wehner
Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
IEEE Transactions on Quantum Engineering
Performance analysis
quantum networks
scan statistics
title Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
title_full Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
title_fullStr Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
title_full_unstemmed Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
title_short Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
title_sort tools for the analysis of quantum protocols requiring state generation within a time window
topic Performance analysis
quantum networks
scan statistics
url https://ieeexplore.ieee.org/document/10417724/
work_keys_str_mv AT bethanydavies toolsfortheanalysisofquantumprotocolsrequiringstategenerationwithinatimewindow
AT thomasbeauchamp toolsfortheanalysisofquantumprotocolsrequiringstategenerationwithinatimewindow
AT gayanevardoyan toolsfortheanalysisofquantumprotocolsrequiringstategenerationwithinatimewindow
AT stephaniewehner toolsfortheanalysisofquantumprotocolsrequiringstategenerationwithinatimewindow