Chromatic Aberration in Wavefront Coding Imaging with Trefoil Phase Mask
The refractive index of the lenses used in optical designs varies with wavelength, causing light rays to fail when focusing on a single plane. This phenomenon is known as chromatic aberration (CA), chromatic distortion, or color fringing, among other terms. Images affected by CA display colored halo...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Photonics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6732/11/12/1117 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The refractive index of the lenses used in optical designs varies with wavelength, causing light rays to fail when focusing on a single plane. This phenomenon is known as chromatic aberration (CA), chromatic distortion, or color fringing, among other terms. Images affected by CA display colored halos and experience a loss of resolution. Fully achromatic systems can be achieved through complex and costly lens designs and/or computationally when digital sensors capture the image. In this work, we propose using the wavefront coding (WFC) technique with a trefoil-shaped phase modulation plate in the optical system to effectively increase the resolution of images affected by longitudinal chromatic aberration (LCA), significantly simplifying the optical design and reducing costs. Experimental results with three LEDs simulating RGB images verify that WFC with trefoil phase plates effectively corrects longitudinal chromatic aberration. Transverse chromatic aberration (TCA) is corrected computationally. Furthermore, we demonstrate that the optical system maintains depth of focus (DoF) for color images. |
|---|---|
| ISSN: | 2304-6732 |