Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures

Hydrolytic degradations of polylactic acid/rice hulls (PLA/RH) composites with various rice hulls contents due to water absorptions at 23, 51 and 69°C were investigated by studying the thermal properties, chemical composition, molecular weight, and morphology of the degraded products. The results ha...

Full description

Saved in:
Bibliographic Details
Format: Article
Language:English
Published: Budapest University of Technology and Economics 2011-02-01
Series:eXPRESS Polymer Letters
Subjects:
Online Access:http://www.expresspolymlett.com/letolt.php?file=EPL-0001793&mi=cd
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrolytic degradations of polylactic acid/rice hulls (PLA/RH) composites with various rice hulls contents due to water absorptions at 23, 51 and 69°C were investigated by studying the thermal properties, chemical composition, molecular weight, and morphology of the degraded products. The results have attested that the stability of PLA/RH composites in water depends slightly on rice hulls contents but it is significantly influenced by water temperature. Water absorption in 30 days at 23°C was between 0.87 and 9.25% depending on rice hull contents. However, at thermophilic temperatures, the water absorption and degradation of these products were increased significantly. Saturations were achieved in less than 25 and 9 days at 51°C and 69°C, respectively, while hydrolytic degradation was demonstrated by an increase in fragility and development of crystallinity. At 69°C, there were significant reductions of the decomposition and glass transition temperatures of the polymer by 13°C. These changes were associated with the reduction of the molecular weight of PLA from 153.1 kDa to ~10.7 kDa due to hydrolysis of its ester group.
ISSN:1788-618X