Frequency- and state-dependent dynamics of EEG microstates during propofol anesthesia

Electroencephalography microstate analysis has emerged as a powerful tool for investigating brain dynamics during anesthesia-induced unconsciousness. However, existing studies typically analyze EEG signals across broad frequency bands, leaving the frequency-specific temporal characteristics of micro...

Full description

Saved in:
Bibliographic Details
Main Authors: Yun Zhang, Haidong Wang, Fei Yan, Dawei Song, Qiang Wang, Yubo Wang, Liyu Huang
Format: Article
Language:English
Published: Elsevier 2025-04-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811925001612
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electroencephalography microstate analysis has emerged as a powerful tool for investigating brain dynamics during anesthesia-induced unconsciousness. However, existing studies typically analyze EEG signals across broad frequency bands, leaving the frequency-specific temporal characteristics of microstates poorly understood. In this study, we investigated frequency-specific EEG microstate features in the delta (0.5–4 Hz) and EEG-without-delta (4–30 Hz) frequency bands during propofol anesthesia. Sixty-channel EEG recordings were collected from 18 healthy male participants during wakefulness and propofol-induced unconsciousness. Microstate analysis was conducted separately for delta and EEG-without-delta frequency bands and microstate features were compared across frequency bands and conscious states. Our results revealed eight consistent microstate classes (MS1–MS8) with high topographic similarity across frequency bands, while global explained variance (GEV), mean duration (MeanDur), occurrence (Occ), and coverage (Cov) exhibited significant frequency- and state-dependent variations during propofol anesthesia. In the delta band, propofol-induced unconsciousness was associated with significantly longer MeanDur for microstate classes of MS4, MS5, and MS6 (p < 0.05). In the EEG-without-delta band, GEV, Cov, and Occ significantly increased for MS1 and MS3 (p < 0.01) and decreased for MS2 and MS4 (p < 0.05) during unconsciousness. Notably, microstate features in the EEG-without-delta band showed better sensitivity for discriminating conscious states, achieving a classification accuracy of 0.944. These findings emphasize the importance of frequency-specific microstate analysis in unraveling the neural dynamics of anesthesia-induced unconsciousness and highlight its potential clinical applications for improving anesthesia depth monitoring.
ISSN:1095-9572