Photovoltaic Power Plants with Horizontal Single-Axis Trackers: Influence of the Movement Limit on Incident Solar Irradiance

This paper presents an energy analysis of the influence of the movement limit of a horizontal single-axis tracker on the incident energy on the photovoltaic field. The procedure used comprises the following steps: (i) the determination of the periods of operation of a horizontal single-axis tracking...

Full description

Saved in:
Bibliographic Details
Main Authors: Arsenio Barbón, Jaime Martínez-Suárez, Luis Bayón, Covadonga Bayón-Cueli
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/3/1175
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850199391891095552
author Arsenio Barbón
Jaime Martínez-Suárez
Luis Bayón
Covadonga Bayón-Cueli
author_facet Arsenio Barbón
Jaime Martínez-Suárez
Luis Bayón
Covadonga Bayón-Cueli
author_sort Arsenio Barbón
collection DOAJ
description This paper presents an energy analysis of the influence of the movement limit of a horizontal single-axis tracker on the incident energy on the photovoltaic field. The procedure used comprises the following steps: (i) the determination of the periods of operation of a horizontal single-axis tracking; (ii) the analytical determination of the annual, daily, and hourly incident solar irradiance on the photovoltaic field; (iii) the validation of the model; and (iv) the definition of the evaluation indicators. The study focused on three photovoltaic power plants in Spain (Miraflores <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>V</mi></mrow></semantics></math></inline-formula> power plant, Basir <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>V</mi></mrow></semantics></math></inline-formula> power plant, and Canredondo <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>V</mi></mrow></semantics></math></inline-formula> power plant). Four evaluation indicators (annual energy loss, daily energy loss, beam component, and diffuse component) and ten movement limits, ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>50</mn></mrow></semantics></math></inline-formula> (°) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>60</mn></mrow></semantics></math></inline-formula> (°), were analysed. In Spain, photovoltaic power plants usually have a movement limit of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>60</mn></mrow></semantics></math></inline-formula> (°), which is why it has been called the current scenario. According to this study, the following conclusions can be drawn: (i) It is necessary to calculate the optimal movement limit for each site under study at the design stage of the PV power plant. Although the energy loss per square metre for not using the optimal boundary movement is small, due to the large surface of the photovoltaic field, these energy losses cannot be neglected. For example, in the Canredondo photovoltaic power plant, the limit movement is not optimised and the annual energy loss is 18.49 (MWh). (ii) The higher the range of the limiting movement, the shorter the duration of the static operating period. Therefore, when the current scenario starts the normal tracking mode (where the beam component is maximised), the other scenarios remain in the static mode of operation in a horizontal position, which impairs the incidence of the beam component and favours the diffuse component. (iii) The type of day, in terms of cloudiness index, prevailing at a given location affects the choice of the movement limit. If the beam component is predominant, it favours the performance of the current scenario. In contrast, if the diffuse component is predominant, it favours scenarios other than the current scenario.
format Article
id doaj-art-1b0ed0a9ff484612bfa613dc143a6e9c
institution OA Journals
issn 2076-3417
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-1b0ed0a9ff484612bfa613dc143a6e9c2025-08-20T02:12:38ZengMDPI AGApplied Sciences2076-34172025-01-01153117510.3390/app15031175Photovoltaic Power Plants with Horizontal Single-Axis Trackers: Influence of the Movement Limit on Incident Solar IrradianceArsenio Barbón0Jaime Martínez-Suárez1Luis Bayón2Covadonga Bayón-Cueli3Department of Electrical Engineering, University of Oviedo, 33003 Oviedo, SpainIngeniería de Procesos, Energía y Calidad SL (INGEPEC), 33401 Avilés, SpainDepartment of Mathematics, University of Oviedo, 33003 Oviedo, SpainDNV UK Limited, Operating Expenses (OPEX), Aberdeen AB21 0BR, UKThis paper presents an energy analysis of the influence of the movement limit of a horizontal single-axis tracker on the incident energy on the photovoltaic field. The procedure used comprises the following steps: (i) the determination of the periods of operation of a horizontal single-axis tracking; (ii) the analytical determination of the annual, daily, and hourly incident solar irradiance on the photovoltaic field; (iii) the validation of the model; and (iv) the definition of the evaluation indicators. The study focused on three photovoltaic power plants in Spain (Miraflores <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>V</mi></mrow></semantics></math></inline-formula> power plant, Basir <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>V</mi></mrow></semantics></math></inline-formula> power plant, and Canredondo <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>V</mi></mrow></semantics></math></inline-formula> power plant). Four evaluation indicators (annual energy loss, daily energy loss, beam component, and diffuse component) and ten movement limits, ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>50</mn></mrow></semantics></math></inline-formula> (°) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>60</mn></mrow></semantics></math></inline-formula> (°), were analysed. In Spain, photovoltaic power plants usually have a movement limit of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>60</mn></mrow></semantics></math></inline-formula> (°), which is why it has been called the current scenario. According to this study, the following conclusions can be drawn: (i) It is necessary to calculate the optimal movement limit for each site under study at the design stage of the PV power plant. Although the energy loss per square metre for not using the optimal boundary movement is small, due to the large surface of the photovoltaic field, these energy losses cannot be neglected. For example, in the Canredondo photovoltaic power plant, the limit movement is not optimised and the annual energy loss is 18.49 (MWh). (ii) The higher the range of the limiting movement, the shorter the duration of the static operating period. Therefore, when the current scenario starts the normal tracking mode (where the beam component is maximised), the other scenarios remain in the static mode of operation in a horizontal position, which impairs the incidence of the beam component and favours the diffuse component. (iii) The type of day, in terms of cloudiness index, prevailing at a given location affects the choice of the movement limit. If the beam component is predominant, it favours the performance of the current scenario. In contrast, if the diffuse component is predominant, it favours scenarios other than the current scenario.https://www.mdpi.com/2076-3417/15/3/1175single-axis trackerlimit of movementannual energy lossdaily energy loss
spellingShingle Arsenio Barbón
Jaime Martínez-Suárez
Luis Bayón
Covadonga Bayón-Cueli
Photovoltaic Power Plants with Horizontal Single-Axis Trackers: Influence of the Movement Limit on Incident Solar Irradiance
Applied Sciences
single-axis tracker
limit of movement
annual energy loss
daily energy loss
title Photovoltaic Power Plants with Horizontal Single-Axis Trackers: Influence of the Movement Limit on Incident Solar Irradiance
title_full Photovoltaic Power Plants with Horizontal Single-Axis Trackers: Influence of the Movement Limit on Incident Solar Irradiance
title_fullStr Photovoltaic Power Plants with Horizontal Single-Axis Trackers: Influence of the Movement Limit on Incident Solar Irradiance
title_full_unstemmed Photovoltaic Power Plants with Horizontal Single-Axis Trackers: Influence of the Movement Limit on Incident Solar Irradiance
title_short Photovoltaic Power Plants with Horizontal Single-Axis Trackers: Influence of the Movement Limit on Incident Solar Irradiance
title_sort photovoltaic power plants with horizontal single axis trackers influence of the movement limit on incident solar irradiance
topic single-axis tracker
limit of movement
annual energy loss
daily energy loss
url https://www.mdpi.com/2076-3417/15/3/1175
work_keys_str_mv AT arseniobarbon photovoltaicpowerplantswithhorizontalsingleaxistrackersinfluenceofthemovementlimitonincidentsolarirradiance
AT jaimemartinezsuarez photovoltaicpowerplantswithhorizontalsingleaxistrackersinfluenceofthemovementlimitonincidentsolarirradiance
AT luisbayon photovoltaicpowerplantswithhorizontalsingleaxistrackersinfluenceofthemovementlimitonincidentsolarirradiance
AT covadongabayoncueli photovoltaicpowerplantswithhorizontalsingleaxistrackersinfluenceofthemovementlimitonincidentsolarirradiance