Extensions of Hardy-Littlewood inequalities

For a function f∈Hp(Bn), with f(0)=0, we prove

Saved in:
Bibliographic Details
Main Author: Zengjian Lou
Format: Article
Language:English
Published: Wiley 1994-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S016117129400027X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545351947517952
author Zengjian Lou
author_facet Zengjian Lou
author_sort Zengjian Lou
collection DOAJ
description For a function f∈Hp(Bn), with f(0)=0, we prove
format Article
id doaj-art-1ad974f605954668aed2eab185165cb8
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1994-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-1ad974f605954668aed2eab185165cb82025-02-03T07:25:58ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251994-01-0117119319510.1155/S016117129400027XExtensions of Hardy-Littlewood inequalitiesZengjian Lou0Mathematics Department, Qufu Normal University, Shandong, Qufu 273165, ChinaFor a function f∈Hp(Bn), with f(0)=0, we provehttp://dx.doi.org/10.1155/S016117129400027XHp(Bn) spacefractional derivative.
spellingShingle Zengjian Lou
Extensions of Hardy-Littlewood inequalities
International Journal of Mathematics and Mathematical Sciences
Hp(Bn) space
fractional derivative.
title Extensions of Hardy-Littlewood inequalities
title_full Extensions of Hardy-Littlewood inequalities
title_fullStr Extensions of Hardy-Littlewood inequalities
title_full_unstemmed Extensions of Hardy-Littlewood inequalities
title_short Extensions of Hardy-Littlewood inequalities
title_sort extensions of hardy littlewood inequalities
topic Hp(Bn) space
fractional derivative.
url http://dx.doi.org/10.1155/S016117129400027X
work_keys_str_mv AT zengjianlou extensionsofhardylittlewoodinequalities