Trajectory- and Friendship-Aware Graph Neural Network with Transformer for Next POI Recommendation

Next point-of-interest (POI) recommendation aims to predict users’ future visitation intentions based on historical check-in trajectories. However, this task faces significant challenges, including coarse-grained user interest representation, insufficient social modeling, sparse check-in data, and t...

Full description

Saved in:
Bibliographic Details
Main Authors: Chenglin Yu, Lihong Shi, Yangyang Zhao
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/14/5/192
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Next point-of-interest (POI) recommendation aims to predict users’ future visitation intentions based on historical check-in trajectories. However, this task faces significant challenges, including coarse-grained user interest representation, insufficient social modeling, sparse check-in data, and the insufficient learning of contextual patterns. To address this, we propose a model that combines check-in trajectory information with user friendship relationships and uses a Transformer architecture for prediction (TraFriendFormer). Our approach begins with the construction of trajectory flow graphs using graph convolutional networks (GCNs) to globally capture POI correlations across both spatial and temporal dimensions. In parallel, we design an integrated social graph that combines explicit friendships with implicit interaction patterns, in which GraphSAGE aggregates neighborhood information to generate enriched user embeddings. Finally, we fuse the POI embeddings, user embeddings, timestamp embeddings, and category embeddings and input them into the Transformer architecture. Through the self-attention mechanism, the model captures the complex temporal relationships in the check-in sequence. We validate the effectiveness of TraFriendFormer on two real-world datasets (FourSquare and Gowalla). The experimental results show that TraFriendFormer achieves an average improvement of 10.3% to 37.2% in metrics such as Acc@<i>k</i> and <i>MRR</i> compared to the selected state-of-the-art baselines.
ISSN:2220-9964