Coordinated Optimization of Multi-Regional Integrated Energy Service Providers with Flexible Reserve Resources

Aiming at solving the problem of new energy and load uncertainty leading to a steep increase in the demand for flexible reserve resources by integrated energy service providers (IESPs), a coordinated and optimized scheduling method for multi-region integrated energy service providers considering fle...

Full description

Saved in:
Bibliographic Details
Main Authors: Xueting Wang, Hao Zhong, Xianqiu Zou, Qiujie Wang, Lanfang Li
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/2/284
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming at solving the problem of new energy and load uncertainty leading to a steep increase in the demand for flexible reserve resources by integrated energy service providers (IESPs), a coordinated and optimized scheduling method for multi-region integrated energy service providers considering flexible reserve resources is proposed. First, for the uncertainty of new energy and load, Latin hypercube sampling is used to generate scenarios, and the scenarios are reduced by a K-means clustering algorithm. Second, based on the interaction relationship between the active distribution network (ADN) and multi-region IESPs, a mixed game model of the ADN and IESP alliance is established. ADN guides IESPs to optimize their operation by setting prices for electricity and reserves, and IESPs fully tap their own flexible reserve resources according to the prices set by ADN and achieve power interoperability through the interaction of IESPs in multiple regions to synergistically cope with the uncertainties of new energy and load. Finally, the example results show that the model proposed in this paper is able to realize the allocation of flexibility resources in a wider range, reduce the reserve pressure on the superior grid, and improve the profitability of IESPs.
ISSN:1996-1073