Melting behaviour and crystallisation kinetics of carbon-fibre-reinforced low-melting poly(aryl ether ketone)

The dependence of material properties and residual stress formation on the crystallinity of thermoplastic composites necessitates detailed analyses regarding the melting behaviour and the crystallisation kinetics of employed semi-crystalline matrices as well as accurate crystallisation models. This...

Full description

Saved in:
Bibliographic Details
Main Authors: Jan-Lukas Stüven, Sebastian Heimbs, Carsten Schmidt
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Polymer Testing
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0142941825000327
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832573195622809600
author Jan-Lukas Stüven
Sebastian Heimbs
Carsten Schmidt
author_facet Jan-Lukas Stüven
Sebastian Heimbs
Carsten Schmidt
author_sort Jan-Lukas Stüven
collection DOAJ
description The dependence of material properties and residual stress formation on the crystallinity of thermoplastic composites necessitates detailed analyses regarding the melting behaviour and the crystallisation kinetics of employed semi-crystalline matrices as well as accurate crystallisation models. This paper investigates a novel low-melting poly(aryl ether ketone) (LM-PAEK) reinforced with carbon fibres, in the form of TC1225 unidirectional tape, based on isothermal and non-isothermal differential scanning calorimetry (DSC). It is shown that the LM-PAEK matrix features a double melting behaviour and exhibits an absolute crystallinity of roughly 18%. Kinetics parameters are derived from the DSC analyses and the applicability of selected crystallisation models for predicting the relative crystallinity is evaluated based on a comparison with the DSC data. Under isothermal conditions, the modified Hillier model and the parallel Velisaris–Seferis model yield good agreement. In contrast, a dual Nakamura model and a dual Kamal–Chu model yield merely moderate agreement under non-isothermal conditions.
format Article
id doaj-art-1a9935f17ff24c1a968c76eb8f12d4ba
institution Kabale University
issn 1873-2348
language English
publishDate 2025-02-01
publisher Elsevier
record_format Article
series Polymer Testing
spelling doaj-art-1a9935f17ff24c1a968c76eb8f12d4ba2025-02-02T05:26:38ZengElsevierPolymer Testing1873-23482025-02-01143108718Melting behaviour and crystallisation kinetics of carbon-fibre-reinforced low-melting poly(aryl ether ketone)Jan-Lukas Stüven0Sebastian Heimbs1Carsten Schmidt2Institute of Aircraft Design and Lightweight Structures (IFL), Technische Universität Braunschweig, Ottenbecker Damm 12, Stade, 21684, Germany; Corresponding author.Institute of Aircraft Design and Lightweight Structures (IFL), Technische Universität Braunschweig, Ottenbecker Damm 12, Stade, 21684, GermanyInstitute of Production Engineering and Machine Tools (IFW), Leibniz Universität Hannover, Ottenbecker Damm 12, Stade, 21684, GermanyThe dependence of material properties and residual stress formation on the crystallinity of thermoplastic composites necessitates detailed analyses regarding the melting behaviour and the crystallisation kinetics of employed semi-crystalline matrices as well as accurate crystallisation models. This paper investigates a novel low-melting poly(aryl ether ketone) (LM-PAEK) reinforced with carbon fibres, in the form of TC1225 unidirectional tape, based on isothermal and non-isothermal differential scanning calorimetry (DSC). It is shown that the LM-PAEK matrix features a double melting behaviour and exhibits an absolute crystallinity of roughly 18%. Kinetics parameters are derived from the DSC analyses and the applicability of selected crystallisation models for predicting the relative crystallinity is evaluated based on a comparison with the DSC data. Under isothermal conditions, the modified Hillier model and the parallel Velisaris–Seferis model yield good agreement. In contrast, a dual Nakamura model and a dual Kamal–Chu model yield merely moderate agreement under non-isothermal conditions.http://www.sciencedirect.com/science/article/pii/S0142941825000327Melting behaviourCrystallisation kineticsLow-melting poly(aryl ether ketone) (LM-PAEK)Thermoplastic compositeDifferential scanning calorimetry (DSC)Modelling
spellingShingle Jan-Lukas Stüven
Sebastian Heimbs
Carsten Schmidt
Melting behaviour and crystallisation kinetics of carbon-fibre-reinforced low-melting poly(aryl ether ketone)
Polymer Testing
Melting behaviour
Crystallisation kinetics
Low-melting poly(aryl ether ketone) (LM-PAEK)
Thermoplastic composite
Differential scanning calorimetry (DSC)
Modelling
title Melting behaviour and crystallisation kinetics of carbon-fibre-reinforced low-melting poly(aryl ether ketone)
title_full Melting behaviour and crystallisation kinetics of carbon-fibre-reinforced low-melting poly(aryl ether ketone)
title_fullStr Melting behaviour and crystallisation kinetics of carbon-fibre-reinforced low-melting poly(aryl ether ketone)
title_full_unstemmed Melting behaviour and crystallisation kinetics of carbon-fibre-reinforced low-melting poly(aryl ether ketone)
title_short Melting behaviour and crystallisation kinetics of carbon-fibre-reinforced low-melting poly(aryl ether ketone)
title_sort melting behaviour and crystallisation kinetics of carbon fibre reinforced low melting poly aryl ether ketone
topic Melting behaviour
Crystallisation kinetics
Low-melting poly(aryl ether ketone) (LM-PAEK)
Thermoplastic composite
Differential scanning calorimetry (DSC)
Modelling
url http://www.sciencedirect.com/science/article/pii/S0142941825000327
work_keys_str_mv AT janlukasstuven meltingbehaviourandcrystallisationkineticsofcarbonfibrereinforcedlowmeltingpolyaryletherketone
AT sebastianheimbs meltingbehaviourandcrystallisationkineticsofcarbonfibrereinforcedlowmeltingpolyaryletherketone
AT carstenschmidt meltingbehaviourandcrystallisationkineticsofcarbonfibrereinforcedlowmeltingpolyaryletherketone