Exact Solution of Modified Veselov–Novikov Equation and Some Applications in the Game Theory
A method of finding exact solutions of the modified Veselov–Novikov (mVN) equation is constructed by Moutard transformations, and a geometric interpretation of these transformations is obtained. An exact solution of the mVN equation is found on the example of a higher order Enneper surface, and give...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2020/9740638 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method of finding exact solutions of the modified Veselov–Novikov (mVN) equation is constructed by Moutard transformations, and a geometric interpretation of these transformations is obtained. An exact solution of the mVN equation is found on the example of a higher order Enneper surface, and given transformations are applied in the game theory via Kazakh proverbs in terms of trees. |
---|---|
ISSN: | 0161-1712 1687-0425 |