Metabolic and transcriptomic responses of Taxus mairei to nano-pollutants: insights into AgNPs and PsNPs impact
There is a growing global concern regarding the pervasive issue of nano-pollutants. Typical nano-materials, such as polystyrene nanoplastics (PsNPs) and silver nanoparticles (AgNPs), pose significant risks to ecosystems and human health. Taxus mairei is a well-known gymnosperm widely planted in Sout...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Maximum Academic Press
2025-01-01
|
| Series: | Medicinal Plant Biology |
| Subjects: | |
| Online Access: | https://www.maxapress.com/article/doi/10.48130/mpb-0025-0007 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | There is a growing global concern regarding the pervasive issue of nano-pollutants. Typical nano-materials, such as polystyrene nanoplastics (PsNPs) and silver nanoparticles (AgNPs), pose significant risks to ecosystems and human health. Taxus mairei is a well-known gymnosperm widely planted in South China and has great medicinal qualities. However, the effects of nano pollutants on the primary and secondary metabolism of Taxus plants have not been sufficiently explored. We investigated the responses of T. mairei to different nano-pollutants via physiological, transcriptomic, and metabolomic analyses. AgNPs and PsNPs significantly affected several secondary and energy metabolism-related pathways, respectively. In T. mairei, AgNPs greatly impacted flavonoid metabolism by regulating the expression of the CHI gene, while PsNPs significantly impacted energy metabolism by regulating the expression of FRK genes. Furthermore, a transcriptional regulation network, including GATA (ctg10916_gene.2), bHLH (ctg495_gene.7), MYB (ctg18368_gene.1), and NAC (ctg8193_gene.1), was predicted to be associated with the responses of T. mairei to nano-pollutants. The present study elucidated a regulatory mechanism underlying the responses of T. mairei to nano-pollutants, which has the potential to aid in the breeding of Taxus species with high environmental adaptability. |
|---|---|
| ISSN: | 2835-6969 |