Explicit Spectral Decimation for a Class of Self-Similar Fractals

The method of spectral decimation is applied to an infinite collection of self-similar fractals. The sets considered are a generalization of the Sierpinski Gasket to higher dimensions; they belong to the class of nested fractals and are thus very symmetric. An explicit construction is given to obtai...

Full description

Saved in:
Bibliographic Details
Main Authors: Sergio A. Hernández, Federico Menéndez-Conde
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/756075
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552142741700608
author Sergio A. Hernández
Federico Menéndez-Conde
author_facet Sergio A. Hernández
Federico Menéndez-Conde
author_sort Sergio A. Hernández
collection DOAJ
description The method of spectral decimation is applied to an infinite collection of self-similar fractals. The sets considered are a generalization of the Sierpinski Gasket to higher dimensions; they belong to the class of nested fractals and are thus very symmetric. An explicit construction is given to obtain formulas for the eigenvalues of the Laplace operator acting on these fractals.
format Article
id doaj-art-19ded2a7287a4ed3a5444abb3af76373
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-19ded2a7287a4ed3a5444abb3af763732025-02-03T05:59:28ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/756075756075Explicit Spectral Decimation for a Class of Self-Similar FractalsSergio A. Hernández0Federico Menéndez-Conde1Centro de Investigación en Matemáticas, Universidad Autónoma del Estado de Hidalgo, 42184 Pachuca, HGO, MexicoCentro de Investigación en Matemáticas, Universidad Autónoma del Estado de Hidalgo, 42184 Pachuca, HGO, MexicoThe method of spectral decimation is applied to an infinite collection of self-similar fractals. The sets considered are a generalization of the Sierpinski Gasket to higher dimensions; they belong to the class of nested fractals and are thus very symmetric. An explicit construction is given to obtain formulas for the eigenvalues of the Laplace operator acting on these fractals.http://dx.doi.org/10.1155/2013/756075
spellingShingle Sergio A. Hernández
Federico Menéndez-Conde
Explicit Spectral Decimation for a Class of Self-Similar Fractals
Abstract and Applied Analysis
title Explicit Spectral Decimation for a Class of Self-Similar Fractals
title_full Explicit Spectral Decimation for a Class of Self-Similar Fractals
title_fullStr Explicit Spectral Decimation for a Class of Self-Similar Fractals
title_full_unstemmed Explicit Spectral Decimation for a Class of Self-Similar Fractals
title_short Explicit Spectral Decimation for a Class of Self-Similar Fractals
title_sort explicit spectral decimation for a class of self similar fractals
url http://dx.doi.org/10.1155/2013/756075
work_keys_str_mv AT sergioahernandez explicitspectraldecimationforaclassofselfsimilarfractals
AT federicomenendezconde explicitspectraldecimationforaclassofselfsimilarfractals