Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice
Positron emission tomography (PET) for in vivo monitoring of phosphatidylserine externalization and glucose metabolism can potentially provide early predictors of outcome of cardioprotective therapies after myocardial infarction. We performed serial [ 68 Ga]annexin A5 PET (annexin-PET) and [ 18 F]fl...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2012-11-01
|
Series: | Molecular Imaging |
Online Access: | https://doi.org/10.2310/7290.2012.00010 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832544598213263360 |
---|---|
author | Sebastian Lehner Andrei Todica Stefan Brunner Christopher Uebleis Hao Wang Carmen Wängler Nadja Herbach Tanja Herrler Guido Böning Rüdiger Paul Laubender Paul Cumming Ralf Schirrmacher Wolfgang Franz Marcus Hacker |
author_facet | Sebastian Lehner Andrei Todica Stefan Brunner Christopher Uebleis Hao Wang Carmen Wängler Nadja Herbach Tanja Herrler Guido Böning Rüdiger Paul Laubender Paul Cumming Ralf Schirrmacher Wolfgang Franz Marcus Hacker |
author_sort | Sebastian Lehner |
collection | DOAJ |
description | Positron emission tomography (PET) for in vivo monitoring of phosphatidylserine externalization and glucose metabolism can potentially provide early predictors of outcome of cardioprotective therapies after myocardial infarction. We performed serial [ 68 Ga]annexin A5 PET (annexin-PET) and [ 18 F]fluorodeoxyglucose PET (FDG-PET) after myocardial infarction to determine the time of peak phosphatidylserine externalization in relation to impaired glucose metabolism in infracted tissue. Annexin- and FDG-PET recordings were obtained in female (C57BL6/N) mice on days 1 to 4 after ligation of the left anterior descending (LAD) artery. [ 68 Ga]annexin A5 uptake (%ID/g) in the LAD artery territory increased from 1.7 ± 1.1 on day 1 to 5.0 ± 3.3 on day 2 and then declined to 2.0 ± 1.4 on day 3 (p = .047 vs day 2) and 1.6 ± 1.4 on day 4 ( p = .014 vs day 2). These results matched apoptosis rates as estimated by autoradiography and fluorescein staining. FDG uptake (%ID/g) declined from 28 ± 14 on day 1 to 14 ± 3.5 on day 4 ( p < .0001 vs day 1). Whereas FDG-PET revealed continuous loss of cell viability after permanent LAD artery occlusion, annexin-PET indicated peak phosphatidylserine expression at day 2, which might be the optimal time point for therapy monitoring. |
format | Article |
id | doaj-art-19de5c48ffbc4313a9c8a56bb29d8634 |
institution | Kabale University |
issn | 1536-0121 |
language | English |
publishDate | 2012-11-01 |
publisher | SAGE Publishing |
record_format | Article |
series | Molecular Imaging |
spelling | doaj-art-19de5c48ffbc4313a9c8a56bb29d86342025-02-03T10:07:59ZengSAGE PublishingMolecular Imaging1536-01212012-11-011110.2310/7290.2012.0001010.2310_7290.2012.00010Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in MiceSebastian LehnerAndrei TodicaStefan BrunnerChristopher UebleisHao WangCarmen WänglerNadja HerbachTanja HerrlerGuido BöningRüdiger Paul LaubenderPaul CummingRalf SchirrmacherWolfgang FranzMarcus HackerPositron emission tomography (PET) for in vivo monitoring of phosphatidylserine externalization and glucose metabolism can potentially provide early predictors of outcome of cardioprotective therapies after myocardial infarction. We performed serial [ 68 Ga]annexin A5 PET (annexin-PET) and [ 18 F]fluorodeoxyglucose PET (FDG-PET) after myocardial infarction to determine the time of peak phosphatidylserine externalization in relation to impaired glucose metabolism in infracted tissue. Annexin- and FDG-PET recordings were obtained in female (C57BL6/N) mice on days 1 to 4 after ligation of the left anterior descending (LAD) artery. [ 68 Ga]annexin A5 uptake (%ID/g) in the LAD artery territory increased from 1.7 ± 1.1 on day 1 to 5.0 ± 3.3 on day 2 and then declined to 2.0 ± 1.4 on day 3 (p = .047 vs day 2) and 1.6 ± 1.4 on day 4 ( p = .014 vs day 2). These results matched apoptosis rates as estimated by autoradiography and fluorescein staining. FDG uptake (%ID/g) declined from 28 ± 14 on day 1 to 14 ± 3.5 on day 4 ( p < .0001 vs day 1). Whereas FDG-PET revealed continuous loss of cell viability after permanent LAD artery occlusion, annexin-PET indicated peak phosphatidylserine expression at day 2, which might be the optimal time point for therapy monitoring.https://doi.org/10.2310/7290.2012.00010 |
spellingShingle | Sebastian Lehner Andrei Todica Stefan Brunner Christopher Uebleis Hao Wang Carmen Wängler Nadja Herbach Tanja Herrler Guido Böning Rüdiger Paul Laubender Paul Cumming Ralf Schirrmacher Wolfgang Franz Marcus Hacker Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice Molecular Imaging |
title | Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice |
title_full | Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice |
title_fullStr | Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice |
title_full_unstemmed | Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice |
title_short | Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice |
title_sort | temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction an in vivo imaging study in mice |
url | https://doi.org/10.2310/7290.2012.00010 |
work_keys_str_mv | AT sebastianlehner temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT andreitodica temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT stefanbrunner temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT christopheruebleis temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT haowang temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT carmenwangler temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT nadjaherbach temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT tanjaherrler temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT guidoboning temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT rudigerpaullaubender temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT paulcumming temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT ralfschirrmacher temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT wolfgangfranz temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice AT marcushacker temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice |