Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice

Positron emission tomography (PET) for in vivo monitoring of phosphatidylserine externalization and glucose metabolism can potentially provide early predictors of outcome of cardioprotective therapies after myocardial infarction. We performed serial [ 68 Ga]annexin A5 PET (annexin-PET) and [ 18 F]fl...

Full description

Saved in:
Bibliographic Details
Main Authors: Sebastian Lehner, Andrei Todica, Stefan Brunner, Christopher Uebleis, Hao Wang, Carmen Wängler, Nadja Herbach, Tanja Herrler, Guido Böning, Rüdiger Paul Laubender, Paul Cumming, Ralf Schirrmacher, Wolfgang Franz, Marcus Hacker
Format: Article
Language:English
Published: SAGE Publishing 2012-11-01
Series:Molecular Imaging
Online Access:https://doi.org/10.2310/7290.2012.00010
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832544598213263360
author Sebastian Lehner
Andrei Todica
Stefan Brunner
Christopher Uebleis
Hao Wang
Carmen Wängler
Nadja Herbach
Tanja Herrler
Guido Böning
Rüdiger Paul Laubender
Paul Cumming
Ralf Schirrmacher
Wolfgang Franz
Marcus Hacker
author_facet Sebastian Lehner
Andrei Todica
Stefan Brunner
Christopher Uebleis
Hao Wang
Carmen Wängler
Nadja Herbach
Tanja Herrler
Guido Böning
Rüdiger Paul Laubender
Paul Cumming
Ralf Schirrmacher
Wolfgang Franz
Marcus Hacker
author_sort Sebastian Lehner
collection DOAJ
description Positron emission tomography (PET) for in vivo monitoring of phosphatidylserine externalization and glucose metabolism can potentially provide early predictors of outcome of cardioprotective therapies after myocardial infarction. We performed serial [ 68 Ga]annexin A5 PET (annexin-PET) and [ 18 F]fluorodeoxyglucose PET (FDG-PET) after myocardial infarction to determine the time of peak phosphatidylserine externalization in relation to impaired glucose metabolism in infracted tissue. Annexin- and FDG-PET recordings were obtained in female (C57BL6/N) mice on days 1 to 4 after ligation of the left anterior descending (LAD) artery. [ 68 Ga]annexin A5 uptake (%ID/g) in the LAD artery territory increased from 1.7 ± 1.1 on day 1 to 5.0 ± 3.3 on day 2 and then declined to 2.0 ± 1.4 on day 3 (p = .047 vs day 2) and 1.6 ± 1.4 on day 4 ( p = .014 vs day 2). These results matched apoptosis rates as estimated by autoradiography and fluorescein staining. FDG uptake (%ID/g) declined from 28 ± 14 on day 1 to 14 ± 3.5 on day 4 ( p < .0001 vs day 1). Whereas FDG-PET revealed continuous loss of cell viability after permanent LAD artery occlusion, annexin-PET indicated peak phosphatidylserine expression at day 2, which might be the optimal time point for therapy monitoring.
format Article
id doaj-art-19de5c48ffbc4313a9c8a56bb29d8634
institution Kabale University
issn 1536-0121
language English
publishDate 2012-11-01
publisher SAGE Publishing
record_format Article
series Molecular Imaging
spelling doaj-art-19de5c48ffbc4313a9c8a56bb29d86342025-02-03T10:07:59ZengSAGE PublishingMolecular Imaging1536-01212012-11-011110.2310/7290.2012.0001010.2310_7290.2012.00010Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in MiceSebastian LehnerAndrei TodicaStefan BrunnerChristopher UebleisHao WangCarmen WänglerNadja HerbachTanja HerrlerGuido BöningRüdiger Paul LaubenderPaul CummingRalf SchirrmacherWolfgang FranzMarcus HackerPositron emission tomography (PET) for in vivo monitoring of phosphatidylserine externalization and glucose metabolism can potentially provide early predictors of outcome of cardioprotective therapies after myocardial infarction. We performed serial [ 68 Ga]annexin A5 PET (annexin-PET) and [ 18 F]fluorodeoxyglucose PET (FDG-PET) after myocardial infarction to determine the time of peak phosphatidylserine externalization in relation to impaired glucose metabolism in infracted tissue. Annexin- and FDG-PET recordings were obtained in female (C57BL6/N) mice on days 1 to 4 after ligation of the left anterior descending (LAD) artery. [ 68 Ga]annexin A5 uptake (%ID/g) in the LAD artery territory increased from 1.7 ± 1.1 on day 1 to 5.0 ± 3.3 on day 2 and then declined to 2.0 ± 1.4 on day 3 (p = .047 vs day 2) and 1.6 ± 1.4 on day 4 ( p = .014 vs day 2). These results matched apoptosis rates as estimated by autoradiography and fluorescein staining. FDG uptake (%ID/g) declined from 28 ± 14 on day 1 to 14 ± 3.5 on day 4 ( p < .0001 vs day 1). Whereas FDG-PET revealed continuous loss of cell viability after permanent LAD artery occlusion, annexin-PET indicated peak phosphatidylserine expression at day 2, which might be the optimal time point for therapy monitoring.https://doi.org/10.2310/7290.2012.00010
spellingShingle Sebastian Lehner
Andrei Todica
Stefan Brunner
Christopher Uebleis
Hao Wang
Carmen Wängler
Nadja Herbach
Tanja Herrler
Guido Böning
Rüdiger Paul Laubender
Paul Cumming
Ralf Schirrmacher
Wolfgang Franz
Marcus Hacker
Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice
Molecular Imaging
title Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice
title_full Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice
title_fullStr Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice
title_full_unstemmed Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice
title_short Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice
title_sort temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction an in vivo imaging study in mice
url https://doi.org/10.2310/7290.2012.00010
work_keys_str_mv AT sebastianlehner temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT andreitodica temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT stefanbrunner temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT christopheruebleis temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT haowang temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT carmenwangler temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT nadjaherbach temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT tanjaherrler temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT guidoboning temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT rudigerpaullaubender temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT paulcumming temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT ralfschirrmacher temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT wolfgangfranz temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice
AT marcushacker temporalchangesinphosphatidylserineexpressionandglucosemetabolismaftermyocardialinfarctionaninvivoimagingstudyinmice