On the constant in the nonuniform version of the Berry-Esseen theorem

In 2001, Chen and Shao gave the nonuniform estimation of the rate of convergence in Berry-Esseen theorem for independent random variables via Stein-Chen-Shao method. The aim of this paper is to obtain a constant in Chen-Shao theorem, where the random variables are not necessarily identically distrib...

Full description

Saved in:
Bibliographic Details
Main Author: K. Neammanee
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.1951
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 2001, Chen and Shao gave the nonuniform estimation of the rate of convergence in Berry-Esseen theorem for independent random variables via Stein-Chen-Shao method. The aim of this paper is to obtain a constant in Chen-Shao theorem, where the random variables are not necessarily identically distributed and the existence of their third moments are not assumed. The bound is given in terms of truncated moments and the constant obtained is 21.44 for most values. We use a technique called Stein's method, in particular the Chen-Shao concentration inequality.
ISSN:0161-1712
1687-0425