Using Graph-Enhanced Deep Reinforcement Learning for Distribution Network Fault Recovery

Fault recovery in distribution networks is a complex, high-dimensional decision-making task characterized by partial observability, dynamic topology, and strong interdependencies among components. To address these challenges, this paper proposes a graph-based multi-agent deep reinforcement learning...

Full description

Saved in:
Bibliographic Details
Main Authors: Yueran Liu, Peng Liao, Yang Wang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/7/543
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fault recovery in distribution networks is a complex, high-dimensional decision-making task characterized by partial observability, dynamic topology, and strong interdependencies among components. To address these challenges, this paper proposes a graph-based multi-agent deep reinforcement learning (DRL) framework for intelligent fault restoration in power distribution networks. The restoration problem is modeled as a partially observable Markov decision process (POMDP), where each agent employs graph neural networks to extract topological features and enhance environmental perception. To address the high-dimensionality of the action space, an action decomposition strategy is introduced, treating each switch operation as an independent binary classification task, which improves convergence and decision efficiency. Furthermore, a collaborative reward mechanism is designed to promote coordination among agents and optimize global restoration performance. Experiments on the PG&E 69-bus system demonstrate that the proposed method significantly outperforms existing DRL baselines. Specifically, it achieves up to 2.6% higher load recovery, up to 0.0 p.u. lower recovery cost, and full restoration in the midday scenario, with statistically significant improvements (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo><</mo><mn>0.05</mn></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo><</mo><mn>0.01</mn></mrow></semantics></math></inline-formula>). These results highlight the effectiveness of graph-based learning and cooperative rewards in improving the resilience, efficiency, and adaptability of distribution network operations under varying conditions.
ISSN:2075-1702