Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems

In the case of K≠D(A)¯, we study Cauchy problems and periodic problems for nonlinear evolution equation u(t)∈K, u′(t)+Au(t)∋f(t,u(t)), 0≤t≤T, where A isa maximal monotone operator on a Hilbert space H, K is a closed, convex subset of H, V is a subspace of H, and f:[0,T]×(K∩V)→H is of Carathéodory ty...

Full description

Saved in:
Bibliographic Details
Main Authors: Norimichi Hirano, Naoki Shioji
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/S1085337504311073
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558154216374272
author Norimichi Hirano
Naoki Shioji
author_facet Norimichi Hirano
Naoki Shioji
author_sort Norimichi Hirano
collection DOAJ
description In the case of K≠D(A)¯, we study Cauchy problems and periodic problems for nonlinear evolution equation u(t)∈K, u′(t)+Au(t)∋f(t,u(t)), 0≤t≤T, where A isa maximal monotone operator on a Hilbert space H, K is a closed, convex subset of H, V is a subspace of H, and f:[0,T]×(K∩V)→H is of Carathéodory type.
format Article
id doaj-art-1942208f6d2d4c529460cfa947028cf4
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2004-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-1942208f6d2d4c529460cfa947028cf42025-02-03T01:33:05ZengWileyAbstract and Applied Analysis1085-33751687-04092004-01-012004318320310.1155/S1085337504311073Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problemsNorimichi Hirano0Naoki Shioji1Department of Mathematics, Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, JapanDepartment of Mathematics, Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, JapanIn the case of K≠D(A)¯, we study Cauchy problems and periodic problems for nonlinear evolution equation u(t)∈K, u′(t)+Au(t)∋f(t,u(t)), 0≤t≤T, where A isa maximal monotone operator on a Hilbert space H, K is a closed, convex subset of H, V is a subspace of H, and f:[0,T]×(K∩V)→H is of Carathéodory type.http://dx.doi.org/10.1155/S1085337504311073
spellingShingle Norimichi Hirano
Naoki Shioji
Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems
Abstract and Applied Analysis
title Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems
title_full Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems
title_fullStr Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems
title_full_unstemmed Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems
title_short Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems
title_sort invariant sets for nonlinear evolution equations cauchy problems and periodic problems
url http://dx.doi.org/10.1155/S1085337504311073
work_keys_str_mv AT norimichihirano invariantsetsfornonlinearevolutionequationscauchyproblemsandperiodicproblems
AT naokishioji invariantsetsfornonlinearevolutionequationscauchyproblemsandperiodicproblems