Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables

Let {Xij} be a double sequence of pairwise independent random variables. If P{|Xmn|≥t}≤P{|X|≥t} for all nonnegative real numbers t and E|X|p(log+|X|)3<∞, for 1<p<2, then we prove that ∑i=1m∑j=1n(Xij−EXij)(mn)1/p→0    a.s.   as  m∨n→∞.                                     (0.1) Under the weak...

Full description

Saved in:
Bibliographic Details
Main Authors: Dug Hun Hong, Seok Yoon Hwang
Format: Article
Language:English
Published: Wiley 1999-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171299221710
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550194145656832
author Dug Hun Hong
Seok Yoon Hwang
author_facet Dug Hun Hong
Seok Yoon Hwang
author_sort Dug Hun Hong
collection DOAJ
description Let {Xij} be a double sequence of pairwise independent random variables. If P{|Xmn|≥t}≤P{|X|≥t} for all nonnegative real numbers t and E|X|p(log+|X|)3<∞, for 1<p<2, then we prove that ∑i=1m∑j=1n(Xij−EXij)(mn)1/p→0    a.s.   as  m∨n→∞.                                     (0.1) Under the weak condition of E|X|plog+|X|<∞, it converges to 0 in L1. And the results can be generalized to an r-dimensional array of random variables under the conditions E|X|p(log+|X|)r+1<∞,E|X|p(log+|X|)r−1<∞, respectively, thus, extending Choi and Sung's result [1] of the one-dimensional case.
format Article
id doaj-art-192f1af5cc1b46c79725da2a8333c4ee
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1999-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-192f1af5cc1b46c79725da2a8333c4ee2025-02-03T06:07:29ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251999-01-0122117117710.1155/S0161171299221710Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variablesDug Hun Hong0Seok Yoon Hwang1School of Mechanical and Automotive Engineering, Catholic University of Taegu-Hyosung, Kyungbuk 712-702, South KoreaDepartment of Mathematics, Taegu University, Kyungbuk 713-714, South KoreaLet {Xij} be a double sequence of pairwise independent random variables. If P{|Xmn|≥t}≤P{|X|≥t} for all nonnegative real numbers t and E|X|p(log+|X|)3<∞, for 1<p<2, then we prove that ∑i=1m∑j=1n(Xij−EXij)(mn)1/p→0    a.s.   as  m∨n→∞.                                     (0.1) Under the weak condition of E|X|plog+|X|<∞, it converges to 0 in L1. And the results can be generalized to an r-dimensional array of random variables under the conditions E|X|p(log+|X|)r+1<∞,E|X|p(log+|X|)r−1<∞, respectively, thus, extending Choi and Sung's result [1] of the one-dimensional case.http://dx.doi.org/10.1155/S0161171299221710Strong law of large numberspairwise independent.
spellingShingle Dug Hun Hong
Seok Yoon Hwang
Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables
International Journal of Mathematics and Mathematical Sciences
Strong law of large numbers
pairwise independent.
title Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables
title_full Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables
title_fullStr Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables
title_full_unstemmed Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables
title_short Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables
title_sort marcinkiewicz type strong law of large numbers for double arrays of pairwise independent random variables
topic Strong law of large numbers
pairwise independent.
url http://dx.doi.org/10.1155/S0161171299221710
work_keys_str_mv AT dughunhong marcinkiewicztypestronglawoflargenumbersfordoublearraysofpairwiseindependentrandomvariables
AT seokyoonhwang marcinkiewicztypestronglawoflargenumbersfordoublearraysofpairwiseindependentrandomvariables