Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems

We obtain an approximation of the solution of the nonlinear Volterra integral equation of the second kind, by means of a new method for its numerical resolution. The main tools used to establish it are the properties of a biorthogonal system in a Banach space and the Banach fixed point theorem.

Saved in:
Bibliographic Details
Main Authors: M. I. Berenguer, D. Gámez, A. I. Garralda-Guillem, M. C. Serrano Pérez
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2010/135216
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562657027162112
author M. I. Berenguer
D. Gámez
A. I. Garralda-Guillem
M. C. Serrano Pérez
author_facet M. I. Berenguer
D. Gámez
A. I. Garralda-Guillem
M. C. Serrano Pérez
author_sort M. I. Berenguer
collection DOAJ
description We obtain an approximation of the solution of the nonlinear Volterra integral equation of the second kind, by means of a new method for its numerical resolution. The main tools used to establish it are the properties of a biorthogonal system in a Banach space and the Banach fixed point theorem.
format Article
id doaj-art-18a9397cb156482da6647f8ee8b49dfb
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-18a9397cb156482da6647f8ee8b49dfb2025-02-03T01:22:08ZengWileyAbstract and Applied Analysis1085-33751687-04092010-01-01201010.1155/2010/135216135216Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal SystemsM. I. Berenguer0D. Gámez1A. I. Garralda-Guillem2M. C. Serrano Pérez3E.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/ Severo Ochoa, s/n, 18071 Granada, SpainE.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/ Severo Ochoa, s/n, 18071 Granada, SpainE.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/ Severo Ochoa, s/n, 18071 Granada, SpainE.U. Arquitectura Técnica, Departamento de Matemática Aplicada, Universidad de Granada, c/ Severo Ochoa, s/n, 18071 Granada, SpainWe obtain an approximation of the solution of the nonlinear Volterra integral equation of the second kind, by means of a new method for its numerical resolution. The main tools used to establish it are the properties of a biorthogonal system in a Banach space and the Banach fixed point theorem.http://dx.doi.org/10.1155/2010/135216
spellingShingle M. I. Berenguer
D. Gámez
A. I. Garralda-Guillem
M. C. Serrano Pérez
Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems
Abstract and Applied Analysis
title Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems
title_full Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems
title_fullStr Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems
title_full_unstemmed Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems
title_short Nonlinear Volterra Integral Equation of the Second Kind and Biorthogonal Systems
title_sort nonlinear volterra integral equation of the second kind and biorthogonal systems
url http://dx.doi.org/10.1155/2010/135216
work_keys_str_mv AT miberenguer nonlinearvolterraintegralequationofthesecondkindandbiorthogonalsystems
AT dgamez nonlinearvolterraintegralequationofthesecondkindandbiorthogonalsystems
AT aigarraldaguillem nonlinearvolterraintegralequationofthesecondkindandbiorthogonalsystems
AT mcserranoperez nonlinearvolterraintegralequationofthesecondkindandbiorthogonalsystems