Topographical Effects on Volcano Deformation Signal Intensity: Implications for GPS Network Configuration

Abstract Volcano GPS networks can capture vital information during volcanic unrest to aid with hazard assessment and eruption forecasting, but can be hindered by their discrete point locations and possibly miss key spatial information. We show how numerical models can reveal controls on spatial defo...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Hickey, K. Pascal, R. Syers, R. Alshembari
Format: Article
Language:English
Published: Wiley 2024-06-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2024GL108812
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Volcano GPS networks can capture vital information during volcanic unrest to aid with hazard assessment and eruption forecasting, but can be hindered by their discrete point locations and possibly miss key spatial information. We show how numerical models can reveal controls on spatial deformation signal intensity compared against GPS network design. Using the GPS network at Soufrière Hills Volcano (SHV), Montserrat, and a range of models, we explore expected surface deformation patterns. Peak horizontal deformation is located offshore, highlighting the difficulties with geodetic monitoring on small ocean‐island volcanoes. Onshore areas where the deformation signal is expected to be high are also identified. At SHV, topography plays a greater role in altering the relative distribution of surface displacement patterns than subsurface heterogeneity. Our method, which can be adapted for other volcanoes, highlights spatial areas that can be targeted for effective GPS station placement to help improve deformation monitoring efficiency.
ISSN:0094-8276
1944-8007