Commuting idempotents of an H∗-algebra

Commutative H∗-algebra is characterized in terms of idempotents. Here we offer three characterizations.

Saved in:
Bibliographic Details
Main Author: P. P. Saworotnow
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171203202246
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566662538199040
author P. P. Saworotnow
author_facet P. P. Saworotnow
author_sort P. P. Saworotnow
collection DOAJ
description Commutative H∗-algebra is characterized in terms of idempotents. Here we offer three characterizations.
format Article
id doaj-art-187e46b5bd674825801091314021e30a
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-187e46b5bd674825801091314021e30a2025-02-03T01:03:24ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-0120031490390710.1155/S0161171203202246Commuting idempotents of an H∗-algebraP. P. Saworotnow0Department of Mathematics, The Catholic University of America, Washington DC 20064, USACommutative H∗-algebra is characterized in terms of idempotents. Here we offer three characterizations.http://dx.doi.org/10.1155/S0161171203202246
spellingShingle P. P. Saworotnow
Commuting idempotents of an H∗-algebra
International Journal of Mathematics and Mathematical Sciences
title Commuting idempotents of an H∗-algebra
title_full Commuting idempotents of an H∗-algebra
title_fullStr Commuting idempotents of an H∗-algebra
title_full_unstemmed Commuting idempotents of an H∗-algebra
title_short Commuting idempotents of an H∗-algebra
title_sort commuting idempotents of an h∗ algebra
url http://dx.doi.org/10.1155/S0161171203202246
work_keys_str_mv AT ppsaworotnow commutingidempotentsofanhalgebra