Exploiting high-order behaviour patterns for cross-domain sequential recommendation

The cross-domain sequential recommendation aims to predict the next item based on a sequence of recorded user behaviours in multiple domains. We propose a novel Cross-domain Sequential Recommendation approach with Graph-Collaborative Filtering (CsrGCF) to alleviate the sparsity issue of user-interac...

Full description

Saved in:
Bibliographic Details
Main Authors: Bingyuan Wang, Baisong Liu, Hao Ren, Xueyuan Zhang, Jiangcheng Qin, Qian Dong, Jiangbo Qian
Format: Article
Language:English
Published: Taylor & Francis Group 2022-12-01
Series:Connection Science
Subjects:
Online Access:http://dx.doi.org/10.1080/09540091.2022.2136141
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cross-domain sequential recommendation aims to predict the next item based on a sequence of recorded user behaviours in multiple domains. We propose a novel Cross-domain Sequential Recommendation approach with Graph-Collaborative Filtering (CsrGCF) to alleviate the sparsity issue of user-interaction data. Specifically, we design time-aware and relation-aware graph attention mechanisms with collaborative filtering to exploit high-order behaviour patterns of users for promising results in both domains. Time-aware Graph Attention mechanism (TGAT) is designed to learn the inter-domain sequence-level representation of items. Relationship-aware Graph Attention mechanism (RGAT) is proposed to learn collaborative items' and users' feature representations. Moreover, to simultaneously improve the recommendation performance in the two domains, a Cross-domain Feature Bidirectional Transfer module (CFBT) is proposed, transferring user's common sharing features in both domains and retaining user's domain-specific features in a specific domain. Finally, cross-domain and sequential information jointly recommend the next items that users like. We conduct extensive experiments on two real-world datasets that show that CsrGCF outperforms several state-of-the-art baselines in terms of Recall and MRR. These demonstrate the necessity of exploiting high-order behaviour patterns of users for a cross-domain sequential recommendation. Meanwhile, retaining domain-specific features is an important step in the process of cross-domain feature bidirectional transferring.
ISSN:0954-0091
1360-0494