Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil

The research was carried out to determine the potential effect of microbiota, organic carbon, percentage of moisture content, and microbial biomass concentration as an evaluator of variation in basal soil respiration rate. Relative distribution and composition of the microbial population were estima...

Full description

Saved in:
Bibliographic Details
Main Author: S. Dash and M. Kujur
Format: Article
Language:English
Published: Technoscience Publications 2024-12-01
Series:Nature Environment and Pollution Technology
Subjects:
Online Access:https://neptjournal.com/upload-images/(35)B-4164.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593978578436096
author S. Dash and M. Kujur
author_facet S. Dash and M. Kujur
author_sort S. Dash and M. Kujur
collection DOAJ
description The research was carried out to determine the potential effect of microbiota, organic carbon, percentage of moisture content, and microbial biomass concentration as an evaluator of variation in basal soil respiration rate. Relative distribution and composition of the microbial population were estimated from six different chronosequence manganese mine spoil (MBO0, MBO2, MBO4, MBO6, MBO8, MBO10) and forest soil (FS). The variation was seen in moisture content (6.494±0.210-11.535±0.072)%, organic carbon (0.126±0.001- 3.469± 0.099)%, MB-C (5.519±1.371- 646.969± 11.428) μg.g-1 of soil. A positive correlation was shown between OC with MB-C (r = 0.938; p< 0.01) and moisture content (MC) (r = 0.962; p< 0.01). Variation in the basal soil respiration (BSR) and microbial metabolic quotients (MMQ) was shown to range between 0.352 ± 0.007- 0.958 ±0.014μg CO2-C.g-1 and 6.5× 10-3 - 1.481×10-3 μg CO2-C.g-1 microbial-C.h-1 with BSR: OC from (2.793-0.276)% respectively. This result shows that there is a gradual increase in OC, MC, MB-C, and BSR across seven different sites due to progressive enhancement in soil fertility that leads to the initialization of succession. Stepwise multiple regression analysis further confirms the degree of variability added by microbial biomass C, moisture content, organic carbon, and microbial population on basal soil respiration in microbes. Principal component analysis enables the differentiation of seven different soil profiles into independent clusters based on cumulative variance given by physico-chemical and microbial attributes that indicate the level of degradation of land and act as an index to restore soil fertility.
format Article
id doaj-art-184df8441590450eb4a234e7ee065582
institution Kabale University
issn 0972-6268
2395-3454
language English
publishDate 2024-12-01
publisher Technoscience Publications
record_format Article
series Nature Environment and Pollution Technology
spelling doaj-art-184df8441590450eb4a234e7ee0655822025-01-20T07:13:36ZengTechnoscience PublicationsNature Environment and Pollution Technology0972-62682395-34542024-12-012342315232310.46488/NEPT.2024.v23i04.035Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine SpoilS. Dash and M. KujurThe research was carried out to determine the potential effect of microbiota, organic carbon, percentage of moisture content, and microbial biomass concentration as an evaluator of variation in basal soil respiration rate. Relative distribution and composition of the microbial population were estimated from six different chronosequence manganese mine spoil (MBO0, MBO2, MBO4, MBO6, MBO8, MBO10) and forest soil (FS). The variation was seen in moisture content (6.494±0.210-11.535±0.072)%, organic carbon (0.126±0.001- 3.469± 0.099)%, MB-C (5.519±1.371- 646.969± 11.428) μg.g-1 of soil. A positive correlation was shown between OC with MB-C (r = 0.938; p< 0.01) and moisture content (MC) (r = 0.962; p< 0.01). Variation in the basal soil respiration (BSR) and microbial metabolic quotients (MMQ) was shown to range between 0.352 ± 0.007- 0.958 ±0.014μg CO2-C.g-1 and 6.5× 10-3 - 1.481×10-3 μg CO2-C.g-1 microbial-C.h-1 with BSR: OC from (2.793-0.276)% respectively. This result shows that there is a gradual increase in OC, MC, MB-C, and BSR across seven different sites due to progressive enhancement in soil fertility that leads to the initialization of succession. Stepwise multiple regression analysis further confirms the degree of variability added by microbial biomass C, moisture content, organic carbon, and microbial population on basal soil respiration in microbes. Principal component analysis enables the differentiation of seven different soil profiles into independent clusters based on cumulative variance given by physico-chemical and microbial attributes that indicate the level of degradation of land and act as an index to restore soil fertility.https://neptjournal.com/upload-images/(35)B-4164.pdfmicrobial population, chronosequence, organic carbon, microbial metabolic quotients, microbial biomass carbon
spellingShingle S. Dash and M. Kujur
Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil
Nature Environment and Pollution Technology
microbial population, chronosequence, organic carbon, microbial metabolic quotients, microbial biomass carbon
title Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil
title_full Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil
title_fullStr Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil
title_full_unstemmed Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil
title_short Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil
title_sort contribution of organic carbon moisture content microbial biomass carbon and basal soil respiration affecting microbial population in chronosequence manganese mine spoil
topic microbial population, chronosequence, organic carbon, microbial metabolic quotients, microbial biomass carbon
url https://neptjournal.com/upload-images/(35)B-4164.pdf
work_keys_str_mv AT sdashandmkujur contributionoforganiccarbonmoisturecontentmicrobialbiomasscarbonandbasalsoilrespirationaffectingmicrobialpopulationinchronosequencemanganeseminespoil