AUV-Based Plume Tracking: A Simulation Study

This paper presents a simulation study of an autonomous underwater vehicle (AUV) navigation system operating in a GPS-denied environment. The AUV navigation method makes use of underwater transponder positioning and requires only one transponder. A multirate unscented Kalman filter is used to determ...

Full description

Saved in:
Bibliographic Details
Main Authors: Awantha Jayasiri, Raymond G. Gosine, George K. I. Mann, Peter McGuire
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2016/1764527
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a simulation study of an autonomous underwater vehicle (AUV) navigation system operating in a GPS-denied environment. The AUV navigation method makes use of underwater transponder positioning and requires only one transponder. A multirate unscented Kalman filter is used to determine the AUV orientation and position by fusing high-rate sensor data and low-rate information. The paper also proposes a gradient-based, efficient, and adaptive novel algorithm for plume boundary tracking missions. The algorithm follows a centralized approach and it includes path optimization features based on gradient information. The proposed algorithm is implemented in simulation on the AUV-based navigation system and successful boundary tracking results are obtained.
ISSN:1687-5249
1687-5257