Optimal Midcourse Guidance with Terminal Relaxation and Range Convex Optimization
In midcourse guidance, strong constraints and dual-channel control coupling pose major challenges for trajectory optimization. To address this, this paper proposes an optimal guidance method based on terminal relaxation and range convex programming. The study first derived a range-domain dynamics mo...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Aerospace |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2226-4310/12/7/618 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In midcourse guidance, strong constraints and dual-channel control coupling pose major challenges for trajectory optimization. To address this, this paper proposes an optimal guidance method based on terminal relaxation and range convex programming. The study first derived a range-domain dynamics model with the angle of attack and bank angle as dual control inputs, augmented with path constraints including heat flux limitations, to formulate the midcourse guidance optimization problem. A terminal relaxation strategy was then proposed to mitigate numerical infeasibility induced by rigid terminal constraints, thereby guaranteeing the solvability of successive subproblems. Through the integration of affine variable transformations and successive linearization techniques, the original nonconvex problem was systematically converted into a second-order cone programming (SOCP) formulation, with theoretical equivalence between the relaxed and original problems established under well-justified assumptions. Furthermore, a heuristic initial trajectory generation scheme was devised, and the solution was obtained via a sequential convex programming (SCP) algorithm. Numerical simulation results demonstrated that the proposed method effectively satisfies strict path constraints, successfully generates feasible midcourse guidance trajectories, and exhibits strong computational efficiency and robustness. Additionally, a systematic comparison was conducted to evaluate the impact of different interpolation methods and discretization point quantities on algorithm performance. |
|---|---|
| ISSN: | 2226-4310 |