Differential Expression Profiling of Long Noncoding RNA and mRNA during Osteoblast Differentiation in Mouse

Long noncoding RNAs (lncRNAs) are emerging as an important controller affecting metabolic tissue development, signaling, and function. However, little is known about the function and profile of lncRNAs in osteoblastic differentiation in mice. Here, we analyzed the RNA-sequencing (RNA-Seq) datasets o...

Full description

Saved in:
Bibliographic Details
Main Authors: Minjung Kim, Youngseok Yu, Ji-Hoi Moon, InSong Koh, Jae-Hyung Lee
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:International Journal of Genomics
Online Access:http://dx.doi.org/10.1155/2018/7691794
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long noncoding RNAs (lncRNAs) are emerging as an important controller affecting metabolic tissue development, signaling, and function. However, little is known about the function and profile of lncRNAs in osteoblastic differentiation in mice. Here, we analyzed the RNA-sequencing (RNA-Seq) datasets obtained for 18 days in two-day intervals from neonatal mouse calvarial pre-osteoblast-like cells. Over the course of osteoblast differentiation, 4058 mRNAs and 3948 lncRNAs were differentially expressed, and they were grouped into 12 clusters according to the expression pattern by fuzzy c-means clustering. Using weighted gene coexpression network analysis, we identified 9 modules related to the early differentiation stage (days 2–8) and 7 modules related to the late differentiation stage (days 10–18). Gene ontology and KEGG pathway enrichment analysis revealed that the mRNA and lncRNA upregulated in the late differentiation stage are highly associated with osteogenesis. We also identified 72 mRNA and 89 lncRNAs as potential markers including several novel markers for osteoblast differentiation and activation. Our findings provide a valuable resource for mouse lncRNA study and improves our understanding of the biology of osteoblastic differentiation in mice.
ISSN:2314-436X
2314-4378