Influence of drought stress on phosphorus dynamics and maize growth in tropical ecosystems
Abstract Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain po...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2025-01-01
|
Series: | BMC Plant Biology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12870-025-06092-x |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment. P uptake and plant biomass decreased significantly lower FC level. P uptake was highest at FC100 (5 g kg−¹) and lowest at FC20 (3.5 g kg−¹). Similarly, biomass was greatest at FC100 (70 g plant−¹) and declined to 35 g plant−¹ at FC20, underscoring the adverse effects of drought on P availability and growth. The results showed a substantial increase in calcium-associated P (HClD-Pi), reaching 45% at FC20. Conversely, labile inorganic P fractions (NaHCO₃-Pi and NaOH-Pi) decreased significantly, from 14.73 to 6.2 mg kg−¹ and 29.4 to 17.7 mg kg−¹, respectively, in FC20 compared to FC100. Organic P fractions (NaHCO₃-Po, NaOH-Po) increased by 6 and 2.4 times, respectively, under lower FC treatments, while HClc-Po was also elevated under drier conditions. These transformations were attributed to changes in soil pH and calcium content, favoring the stabilization of P as HClD-Pi. Drought disrupted the replenishment of inorganic P in the soil solution, reducing bioavailability, though phosphatase activity enhanced organic P release. Pearson’s correlation analysis revealed positive associations between labile and moderately labile P fractions (NaHCO₃-Pi, NaOH-Pi, HClD-Pi) and soil elements (Ca, Al, Fe). RDA highlighted a positive link between phosphatase activity and reduced labile P, while P uptake and biomass were strongly associated with labile and moderately labile P fractions. These findings demonstrate drought’s significant impact on P bioavailability, soil P cycling, and nutrient dynamics. |
---|---|
ISSN: | 1471-2229 |