On Delay-Independent Criteria for Oscillation of Higher-Order Functional Differential Equations
We investigate the oscillation of the following higher-order functional differential equation: x(n)(t)+q(t)|x(t-τ)|λ-1x(t-τ)=e(t), where q(t) and e(t) are continuous functions on [t0,∞), 1>λ>0 and τ≠0 are constants. Unlike most of delay-dependent oscillation results in the literature, two del...
Saved in:
Main Author: | Yuangong Sun |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2011/173158 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations
by: L. K. Kikina, et al.
Published: (2010-01-01) -
Oscillation Criteria for Certain Even Order Neutral Delay Differential Equations
by: Ruba Al-Hamouri, et al.
Published: (2014-01-01) -
Oscillation Criteria of Third-Order Nonlinear Impulsive Differential Equations with Delay
by: Xiuxiang Liu
Published: (2013-01-01) -
Interval Oscillation Criteria for Second-Order Dynamic Equations with Nonlinearities Given by Riemann-Stieltjes Integrals
by: Yuangong Sun
Published: (2011-01-01) -
Oscillation Criteria of First Order Neutral Delay Differential Equations with Variable Coefficients
by: Fatima N. Ahmed, et al.
Published: (2013-01-01)