A Navier–Stokes-Informed Neural Network for Simulating the Flow Behavior of Flowable Cement Paste in 3D Concrete Printing

In this work, we propose a Navier–Stokes-Informed Neural Network (NSINN) as a surrogate approach to predict the localized flow behavior of cementitious materials for advancing 3D additive construction technology to gain fundamental insights into multiscale mechanisms of cement paste rheology. NS equ...

Full description

Saved in:
Bibliographic Details
Main Authors: Tianjie Zhang, Donglei Wang, Yang Lu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/2/275
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588825770065920
author Tianjie Zhang
Donglei Wang
Yang Lu
author_facet Tianjie Zhang
Donglei Wang
Yang Lu
author_sort Tianjie Zhang
collection DOAJ
description In this work, we propose a Navier–Stokes-Informed Neural Network (NSINN) as a surrogate approach to predict the localized flow behavior of cementitious materials for advancing 3D additive construction technology to gain fundamental insights into multiscale mechanisms of cement paste rheology. NS equations are embedded into the NSINN to interpret the flow pattern in the 3D printing barrel. The results show that the presented NSINN has a higher accuracy compared to a traditional artificial neural network (ANN) as the Mean Square Errors (MSEs) of the u, v, and p predicted by NSINN are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.25</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.85</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.91</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. Compared to the ANN, the MSE of the predictions are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.88</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.17</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.72</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. Moreover, the mean prediction time used in the NSINN, the ANN, and Computational Fluid Dynamics (CFD) are 0.039 s, 0.014 s, and 3.37 s, respectively. That means the method is more computationally efficient at performing simulations compared to CFD which is mesh-based. The NSINN is also utilized in studying the relationship between geometry and extrudability. The ratio (R = 0.25, 0.5, and 0.75) between the diameter of the outlet and that of the domain is studied. It shows that a larger ratio (R = 0.75) can lead to better extrudability of the 3D concrete printing (3DCP).
format Article
id doaj-art-176b9e48187d41f4a59e3ec45fe4aa9b
institution Kabale University
issn 2075-5309
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Buildings
spelling doaj-art-176b9e48187d41f4a59e3ec45fe4aa9b2025-01-24T13:26:26ZengMDPI AGBuildings2075-53092025-01-0115227510.3390/buildings15020275A Navier–Stokes-Informed Neural Network for Simulating the Flow Behavior of Flowable Cement Paste in 3D Concrete PrintingTianjie Zhang0Donglei Wang1Yang Lu2Computing PhD Program, Boise State University, Boise, ID 83725, USADepartment of Civil Engineering, Boise State University, Boise, ID 83725, USADepartment of Civil Engineering, Boise State University, Boise, ID 83725, USAIn this work, we propose a Navier–Stokes-Informed Neural Network (NSINN) as a surrogate approach to predict the localized flow behavior of cementitious materials for advancing 3D additive construction technology to gain fundamental insights into multiscale mechanisms of cement paste rheology. NS equations are embedded into the NSINN to interpret the flow pattern in the 3D printing barrel. The results show that the presented NSINN has a higher accuracy compared to a traditional artificial neural network (ANN) as the Mean Square Errors (MSEs) of the u, v, and p predicted by NSINN are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.25</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.85</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.91</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. Compared to the ANN, the MSE of the predictions are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.88</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.17</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.72</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. Moreover, the mean prediction time used in the NSINN, the ANN, and Computational Fluid Dynamics (CFD) are 0.039 s, 0.014 s, and 3.37 s, respectively. That means the method is more computationally efficient at performing simulations compared to CFD which is mesh-based. The NSINN is also utilized in studying the relationship between geometry and extrudability. The ratio (R = 0.25, 0.5, and 0.75) between the diameter of the outlet and that of the domain is studied. It shows that a larger ratio (R = 0.75) can lead to better extrudability of the 3D concrete printing (3DCP).https://www.mdpi.com/2075-5309/15/2/275physics-informed neural networkcementitious materialthree-dimensional concrete printingNavier–Stokes equationscomputational fluid dynamics
spellingShingle Tianjie Zhang
Donglei Wang
Yang Lu
A Navier–Stokes-Informed Neural Network for Simulating the Flow Behavior of Flowable Cement Paste in 3D Concrete Printing
Buildings
physics-informed neural network
cementitious material
three-dimensional concrete printing
Navier–Stokes equations
computational fluid dynamics
title A Navier–Stokes-Informed Neural Network for Simulating the Flow Behavior of Flowable Cement Paste in 3D Concrete Printing
title_full A Navier–Stokes-Informed Neural Network for Simulating the Flow Behavior of Flowable Cement Paste in 3D Concrete Printing
title_fullStr A Navier–Stokes-Informed Neural Network for Simulating the Flow Behavior of Flowable Cement Paste in 3D Concrete Printing
title_full_unstemmed A Navier–Stokes-Informed Neural Network for Simulating the Flow Behavior of Flowable Cement Paste in 3D Concrete Printing
title_short A Navier–Stokes-Informed Neural Network for Simulating the Flow Behavior of Flowable Cement Paste in 3D Concrete Printing
title_sort navier stokes informed neural network for simulating the flow behavior of flowable cement paste in 3d concrete printing
topic physics-informed neural network
cementitious material
three-dimensional concrete printing
Navier–Stokes equations
computational fluid dynamics
url https://www.mdpi.com/2075-5309/15/2/275
work_keys_str_mv AT tianjiezhang anavierstokesinformedneuralnetworkforsimulatingtheflowbehaviorofflowablecementpastein3dconcreteprinting
AT dongleiwang anavierstokesinformedneuralnetworkforsimulatingtheflowbehaviorofflowablecementpastein3dconcreteprinting
AT yanglu anavierstokesinformedneuralnetworkforsimulatingtheflowbehaviorofflowablecementpastein3dconcreteprinting
AT tianjiezhang navierstokesinformedneuralnetworkforsimulatingtheflowbehaviorofflowablecementpastein3dconcreteprinting
AT dongleiwang navierstokesinformedneuralnetworkforsimulatingtheflowbehaviorofflowablecementpastein3dconcreteprinting
AT yanglu navierstokesinformedneuralnetworkforsimulatingtheflowbehaviorofflowablecementpastein3dconcreteprinting