The Detection of Gait Events Based on Smartphones and Deep Learning

This study aims to detect gait events using a smartphone combined with deep learning and evaluate the remote effects and clinical significance of this method in different elderly populations and patients with cerebral small vessel disease (CSVD). In total, 150 healthy individuals aged 20–70 years we...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaiyue Xu, Wenqiang Yu, Shui Yu, Minghui Zheng, Hao Zhang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/5/491
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to detect gait events using a smartphone combined with deep learning and evaluate the remote effects and clinical significance of this method in different elderly populations and patients with cerebral small vessel disease (CSVD). In total, 150 healthy individuals aged 20–70 years were asked to attach a smartphone to their thighs and walk six gait cycles at self-selected low, normal, and high speeds, using an insole pressure sensor as the reference standard for gait events. A deep learning model was then established using BiTCN-BiGRU-CrossAttention, and two models (TCN-GRU and BiTCN-BiGRU) were compared. In total, 48 elderly (25 healthy, 12 with mild cognitive impairment, 11 with Parkinson’s disease) participated in an online home assessment, completing single-task and cognitive dual-task walking. Overall, 35 CSVD patients participated in an offline clinical assessment, completing single-task, cognitive dual-task, and physical dual-task walking. The BiTCN-BiGRU-CrossAttention model had the lowest MAE for detecting gait events compared to the other models. All models had lower MAEs for detecting heel strikes than toe-offs, and the MAE for low and high walking was higher than for normal speed walking. There were significant differences (<i>p</i> < 0.05) in gait parameters (Cadence, Stride time, Stance phase, Swing phase, Stance time, Swing time, Stride length, and walking speed) between single-task and cognitive dual-task walking for all online elderly participants. CSVD patients showed significant differences (<i>p</i> < 0.05) in gait parameters (Cadence, Stride time, Stance phase, Swing phase, Stance time, Stride length, and walking speed) between single-task and cognitive dual-task and between single-task and physical dual-task walking.
ISSN:2306-5354