On functionals of a marked Poisson process observed by a renewal process

We study the functionals of a Poisson marked process Π observed by a renewal process. A sequence of observations continues until Π crosses some fixed level at one of the observation epochs (the first passage time). In various stochastic models applications (such as queueing with N-policy combined wi...

Full description

Saved in:
Bibliographic Details
Main Authors: Jewgeni H. Dshalalow, Jean-Baptiste Bacot
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171201005221
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the functionals of a Poisson marked process Π observed by a renewal process. A sequence of observations continues until Π crosses some fixed level at one of the observation epochs (the first passage time). In various stochastic models applications (such as queueing with N-policy combined with multiple vacations), it is necessary to operate with the value of Π prior to the first passage time, or prior to the first passage time plus some random time. We obtain a time-dependent solution to this problem in a closed form, in terms of its Laplace transform. Many results are directly applicable to the time-dependent analysis of queues and other stochastic models via semi-regenerative techniques.
ISSN:0161-1712
1687-0425