A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization

Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm...

Full description

Saved in:
Bibliographic Details
Main Authors: Shaolong Chen, Renyu Yang, Renhuan Yang, Liu Yang, Xiuzeng Yang, Chuangbiao Xu, Baoguo Xu, Huatao Zhang, Yaosheng Lu, Weiping Liu
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2016/3795961
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564243194445824
author Shaolong Chen
Renyu Yang
Renhuan Yang
Liu Yang
Xiuzeng Yang
Chuangbiao Xu
Baoguo Xu
Huatao Zhang
Yaosheng Lu
Weiping Liu
author_facet Shaolong Chen
Renyu Yang
Renhuan Yang
Liu Yang
Xiuzeng Yang
Chuangbiao Xu
Baoguo Xu
Huatao Zhang
Yaosheng Lu
Weiping Liu
author_sort Shaolong Chen
collection DOAJ
description Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO) has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO) is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.
format Article
id doaj-art-168c521240584f1ab42b0dff1559523d
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-168c521240584f1ab42b0dff1559523d2025-02-03T01:11:25ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2016-01-01201610.1155/2016/37959613795961A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm OptimizationShaolong Chen0Renyu Yang1Renhuan Yang2Liu Yang3Xiuzeng Yang4Chuangbiao Xu5Baoguo Xu6Huatao Zhang7Yaosheng Lu8Weiping Liu9College of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaSchool of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, ChinaCollege of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaCollege of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaDepartment of Physics and Electronic Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, ChinaCollege of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaSchool of Instrument Science and Engineering, Southeast University, Nanjing 210096, ChinaKey Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, ChinaCollege of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaCollege of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaParameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO) has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO) is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.http://dx.doi.org/10.1155/2016/3795961
spellingShingle Shaolong Chen
Renyu Yang
Renhuan Yang
Liu Yang
Xiuzeng Yang
Chuangbiao Xu
Baoguo Xu
Huatao Zhang
Yaosheng Lu
Weiping Liu
A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization
Discrete Dynamics in Nature and Society
title A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization
title_full A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization
title_fullStr A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization
title_full_unstemmed A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization
title_short A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization
title_sort parameter estimation method for nonlinear systems based on improved boundary chicken swarm optimization
url http://dx.doi.org/10.1155/2016/3795961
work_keys_str_mv AT shaolongchen aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT renyuyang aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT renhuanyang aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT liuyang aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT xiuzengyang aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT chuangbiaoxu aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT baoguoxu aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT huataozhang aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT yaoshenglu aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT weipingliu aparameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT shaolongchen parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT renyuyang parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT renhuanyang parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT liuyang parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT xiuzengyang parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT chuangbiaoxu parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT baoguoxu parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT huataozhang parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT yaoshenglu parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization
AT weipingliu parameterestimationmethodfornonlinearsystemsbasedonimprovedboundarychickenswarmoptimization