Rooting for Resilience: Arbuscular Mycorrhizal Fungi (AMF) Boost Citrus Tolerance to Water Scarcity in Rangpur Lime and Carrizo Citrange Rootstocks

Fruits and vegetables play a crucial role in addressing food security challenges posed by the growing global population. Citrus fruits are among the most widely cultivated crops worldwide; however, their production is steadily declining due to climate change. Among the various biotic and abiotic str...

Full description

Saved in:
Bibliographic Details
Main Authors: Sajjad Hussain, Mehwish Jan, Muhammad Fasih Khalid, Sakeena Tul-Ain Haider, Muhammad Arif Ali, Shakeel Ahmad, Samreen Sabir, Mamoudou Sétamou, Raphael Morillon
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Horticulturae
Subjects:
Online Access:https://www.mdpi.com/2311-7524/11/1/24
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fruits and vegetables play a crucial role in addressing food security challenges posed by the growing global population. Citrus fruits are among the most widely cultivated crops worldwide; however, their production is steadily declining due to climate change. Among the various biotic and abiotic stresses affecting citrus production, water scarcity caused by climate change stands out as a significant issue. Interestingly, the rhizosphere of citrus plants is home to beneficial fungi known as arbuscular mycorrhizal fungi (AMF). AMF have been shown to enhance the growth and development of host plants. They also improve the plants’ tolerance to various stresses and enhance soil structure. This study aimed to evaluate the response of two different citrus rootstocks—Rangpur lime and Carrizo citrange—when subjected to three mycorrhizal treatments, namely, AMF+ (inoculated with AMF), AMF- (treated with fungicide to eliminate AMF), and a control (naturally occurring AMF), under conditions of water deficit. The results indicated that the AMF+ treatment had a significant positive effect on both rootstock genotypes compared to the AMF- treatment. Physiological attributes such as photosynthesis, stomatal conductance, transpiration, non-photochemical quenching, and both dark and light quantum yield exhibited significantly smaller declines under water deficit conditions in AMF+ plants compared to those in the AMF- and control groups. Conversely, stress indicators—such as malondialdehyde (MDA) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)—increased significantly in the AMF- treatment compared to AMF+. Additionally, the increase in antioxidative enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APx) and osmotic adjustment (proline (PRO)) was more pronounced in the AMF+ treatment in the leaves and roots of both citrus rootstocks. In conclusion, the findings suggest that the presence and application of AMF in citrus roots may enhance the plants’ ability to cope with water scarcity more effectively.
ISSN:2311-7524