Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy Exponent

This paper deals with the p(x)-Laplacian equation involving the critical Sobolev-Hardy exponent. Firstly, a principle of concentration compactness in W01,p(x)(Ω) space is established, then by applying it we obtain the existence of solutions for the following p(x)-Laplacian problem: -div (|∇u|p(x)-2∇...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Mei, Fu Yongqiang, Li Wang
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/894925
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562788368646144
author Yu Mei
Fu Yongqiang
Li Wang
author_facet Yu Mei
Fu Yongqiang
Li Wang
author_sort Yu Mei
collection DOAJ
description This paper deals with the p(x)-Laplacian equation involving the critical Sobolev-Hardy exponent. Firstly, a principle of concentration compactness in W01,p(x)(Ω) space is established, then by applying it we obtain the existence of solutions for the following p(x)-Laplacian problem: -div (|∇u|p(x)-2∇u)+|u|p(x)-2u=(h(x)|u|ps*(x)-2u/|x|s(x))+f(x,u),  x∈Ω,  u=0,  x∈∂Ω, where Ω⊂ℝN is a bounded domain, 0∈Ω, 1<p-≤p(x)≤p+<N, and f(x,u) satisfies p(x)-growth conditions.
format Article
id doaj-art-15c085cd5ca14b99ac82840681b85865
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-15c085cd5ca14b99ac82840681b858652025-02-03T01:21:45ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/894925894925Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy ExponentYu Mei0Fu Yongqiang1Li Wang2Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, ChinaDepartment of Mathematics, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, ChinaThis paper deals with the p(x)-Laplacian equation involving the critical Sobolev-Hardy exponent. Firstly, a principle of concentration compactness in W01,p(x)(Ω) space is established, then by applying it we obtain the existence of solutions for the following p(x)-Laplacian problem: -div (|∇u|p(x)-2∇u)+|u|p(x)-2u=(h(x)|u|ps*(x)-2u/|x|s(x))+f(x,u),  x∈Ω,  u=0,  x∈∂Ω, where Ω⊂ℝN is a bounded domain, 0∈Ω, 1<p-≤p(x)≤p+<N, and f(x,u) satisfies p(x)-growth conditions.http://dx.doi.org/10.1155/2012/894925
spellingShingle Yu Mei
Fu Yongqiang
Li Wang
Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy Exponent
Abstract and Applied Analysis
title Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy Exponent
title_full Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy Exponent
title_fullStr Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy Exponent
title_full_unstemmed Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy Exponent
title_short Existence of Solutions for the p(x)-Laplacian Problem with the Critical Sobolev-Hardy Exponent
title_sort existence of solutions for the p x laplacian problem with the critical sobolev hardy exponent
url http://dx.doi.org/10.1155/2012/894925
work_keys_str_mv AT yumei existenceofsolutionsforthepxlaplacianproblemwiththecriticalsobolevhardyexponent
AT fuyongqiang existenceofsolutionsforthepxlaplacianproblemwiththecriticalsobolevhardyexponent
AT liwang existenceofsolutionsforthepxlaplacianproblemwiththecriticalsobolevhardyexponent