Epidemic Dynamics of a Fractional-Order SIS Infectious Network Model

Outbreak and large-scale of the infectious diseases have caused enormous economic losses to all countries in the world. Constructing a network model which could reflect the transmission dynamics of the epidemics and investigating their transmission laws have a significant meaning in the precaution a...

Full description

Saved in:
Bibliographic Details
Main Authors: Na Liu, Yunliu Li, Junwei Sun, Jie Fang, Peng Liu
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2021/5518436
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Outbreak and large-scale of the infectious diseases have caused enormous economic losses to all countries in the world. Constructing a network model which could reflect the transmission dynamics of the epidemics and investigating their transmission laws have a significant meaning in the precaution and control of the epidemics. In this article, a fractional-order SIS epidemic network model is proposed. First, an expression of the basic reproduction number is deduced. Second, applying the Lyapunov function, the stability of the equilibrium points about the infectious model is analyzed in detail. Finally, an example is present to verify the theoretical analysis. Furthermore, on account of the fractional-order coefficient, its influence on the transmission dynamics is also exhibited.
ISSN:1026-0226
1607-887X