Finite-Time Path-Following Control of Underactuated AUVs with Actuator Limits Using Disturbance Observer-Based Backstepping Control
This paper presents a three-dimensional (3D) robust adaptive finite-time path-following controller for underactuated Autonomous Underwater Vehicles (AUVs), addressing model uncertainties, external disturbances, and actuator magnitude and rate saturations. A path-following error system is built in a...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Drones |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-446X/9/1/70 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a three-dimensional (3D) robust adaptive finite-time path-following controller for underactuated Autonomous Underwater Vehicles (AUVs), addressing model uncertainties, external disturbances, and actuator magnitude and rate saturations. A path-following error system is built in a path frame using the virtual guidance method. The proposed cascaded closed-loop control scheme can be described in two separate steps: (1) A kinematic law based on a finite-time backstepping control (FTBSC) is introduced to transform the 3D path-following position errors into the command velocities; (2) The actual control inputs are designed in the dynamic controller using an adaptive fixed-time disturbance observer (AFTDO)-based FTBSC to stabilize the velocity tracking errors. Moreover, the adverse effects of magnitude and rate saturations are reduced by an auxiliary compensation system. A Lyapunov-based stability analysis proves that the path-following errors converge to an arbitrarily small region around zero within a finite time. Comparative simulations illustrate the effectiveness and robustness of the proposed controller. |
---|---|
ISSN: | 2504-446X |