Noncommutativity and noncentral zero divisors
Let R be a ring, Z its center, and D the set of zero divisors. For finite noncommutative rings, it is known that D\Z≠∅. We investigate the size of |D\Z| in this case and, also, in the case of infinite noncommutative rings with D\Z≠∅.
Saved in:
Main Authors: | Howard E. Bell, Abraham A. Klein |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1999-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171299220674 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Derivations with values in noncommutative symmetric spaces
by: Huang, Jinghao, et al.
Published: (2023-10-01) -
On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
by: Ali Al Khabyah, et al.
Published: (2025-01-01) -
On commutativity of one-sided s-unital rings
by: H. A. S. Abujabal, et al.
Published: (1992-01-01) -
Some conditions for finiteness of a ring
by: Howard E. Bell
Published: (1988-01-01) -
A note on centralizers
by: Howard E. Bell
Published: (2000-01-01)