A Variable Precision Covering-Based Rough Set Model Based on Functions

Classical rough set theory is a technique of granular computing for handling the uncertainty, vagueness, and granularity in information systems. Covering-based rough sets are proposed to generalize this theory for dealing with covering data. By introducing a concept of misclassification rate functio...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanqing Zhu, William Zhu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/210129
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classical rough set theory is a technique of granular computing for handling the uncertainty, vagueness, and granularity in information systems. Covering-based rough sets are proposed to generalize this theory for dealing with covering data. By introducing a concept of misclassification rate functions, an extended variable precision covering-based rough set model is proposed in this paper. In addition, we define the f-lower and f-upper approximations in terms of neighborhoods in the extended model and study their properties. Particularly, two coverings with the same reductions are proved to generate the same f-lower and f-upper approximations. Finally, we discuss the relationships between the new model and some other variable precision rough set models.
ISSN:2356-6140
1537-744X