Optimal static strain sensor placement for truss bridges

A method to identify optimal strain sensor placement for examining structural static responses is presented. The method is based on the use of numerical optimization. Based on an assumed set of applied static forces, the optimal sensor placement can be obtained, and the measured strains can be used...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng Xiao, J Leroy Hulsey, Gang S Chen, Yujiang Xiang
Format: Article
Language:English
Published: Wiley 2017-05-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1177/1550147717707929
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A method to identify optimal strain sensor placement for examining structural static responses is presented. The method is based on the use of numerical optimization. Based on an assumed set of applied static forces, the optimal sensor placement can be obtained, and the measured strains can be used to provide the information needed to describe the structural stiffness. For example, the cross-sectional area can be determined by minimizing the difference between the analytical and measured strains. This approach is used to identify the optimized sensor placement. The objective of this study is to identify the minimum number of static strain sensors and the optimal sensor layout needed to evaluate a bridge’s structural condition. This study includes an automatic model parameter identification method, optimal static strain sensor placement, damage detection, and application to an actual bridge.
ISSN:1550-1477