Scenario Analysis on Climate Change Impacts of Urban Land Expansion under Different Urbanization Patterns: A Case Study of Wuhan Metropolitan

Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area,...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinli Ke, Feng Wu, Caixue Ma
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2013/293636
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast) model to simulate regional climate change. The results show that: (1) warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2) the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3) the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4) and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period.
ISSN:1687-9309
1687-9317