Estimation and identification of parameters in a lumpedcerebrovascular model

This study shows how sensitivity analysis and subset selection can be employedin a cardiovascular model to estimate total systemic resistance,cerebrovascular resistance, arterial compliance, and time for peak systolicventricular pressure for healthy young and elderly subjects. These quantitiesare pa...

Full description

Saved in:
Bibliographic Details
Main Authors: Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen
Format: Article
Language:English
Published: AIMS Press 2008-11-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2009.6.93
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590166711074816
author Scott R. Pope
Laura M. Ellwein
Cheryl L. Zapata
Vera Novak
C. T. Kelley
Mette S. Olufsen
author_facet Scott R. Pope
Laura M. Ellwein
Cheryl L. Zapata
Vera Novak
C. T. Kelley
Mette S. Olufsen
author_sort Scott R. Pope
collection DOAJ
description This study shows how sensitivity analysis and subset selection can be employedin a cardiovascular model to estimate total systemic resistance,cerebrovascular resistance, arterial compliance, and time for peak systolicventricular pressure for healthy young and elderly subjects. These quantitiesare parameters in a simple lumped parameter model that predicts pressure andflow in the systemic circulation. The model is combined with experimentalmeasurements of blood flow velocity from the middle cerebral artery andarterial finger blood pressure. To estimate the model parameters we usenonlinear optimization combined with sensitivity analysis and subset selection.Sensitivity analysis allows us to rank model parameters from the most to theleast sensitive with respect to the output states (cerebral blood flowvelocity and arterial blood pressure). Subset selection allows us to identifya set of independent candidate parameters that can be estimated given limiteddata. Analyses of output from both methods allow us to identify fiveindependent sensitive parameters that can be estimated given the data.Results show that with the advance of age total systemic and cerebralresistances increase, that time for peak systolic ventricular pressure isincreases, and that arterial compliance is reduced. Thus, the method discussedin this study provides a new methodology to extract clinical markers thatcannot easily be assessed noninvasively.
format Article
id doaj-art-13f6888f4b8948eb8674def60731f3be
institution Kabale University
issn 1551-0018
language English
publishDate 2008-11-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj-art-13f6888f4b8948eb8674def60731f3be2025-01-24T01:58:53ZengAIMS PressMathematical Biosciences and Engineering1551-00182008-11-01619311510.3934/mbe.2009.6.93Estimation and identification of parameters in a lumpedcerebrovascular modelScott R. Pope0Laura M. Ellwein1Cheryl L. Zapata2Vera Novak3C. T. Kelley4Mette S. Olufsen5Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695This study shows how sensitivity analysis and subset selection can be employedin a cardiovascular model to estimate total systemic resistance,cerebrovascular resistance, arterial compliance, and time for peak systolicventricular pressure for healthy young and elderly subjects. These quantitiesare parameters in a simple lumped parameter model that predicts pressure andflow in the systemic circulation. The model is combined with experimentalmeasurements of blood flow velocity from the middle cerebral artery andarterial finger blood pressure. To estimate the model parameters we usenonlinear optimization combined with sensitivity analysis and subset selection.Sensitivity analysis allows us to rank model parameters from the most to theleast sensitive with respect to the output states (cerebral blood flowvelocity and arterial blood pressure). Subset selection allows us to identifya set of independent candidate parameters that can be estimated given limiteddata. Analyses of output from both methods allow us to identify fiveindependent sensitive parameters that can be estimated given the data.Results show that with the advance of age total systemic and cerebralresistances increase, that time for peak systolic ventricular pressure isincreases, and that arterial compliance is reduced. Thus, the method discussedin this study provides a new methodology to extract clinical markers thatcannot easily be assessed noninvasively.https://www.aimspress.com/article/doi/10.3934/mbe.2009.6.93cerebrovascular resistancesubset selectionsystemic resistanceparameter estimationsensitivityanalysiscardiovascular modeling
spellingShingle Scott R. Pope
Laura M. Ellwein
Cheryl L. Zapata
Vera Novak
C. T. Kelley
Mette S. Olufsen
Estimation and identification of parameters in a lumpedcerebrovascular model
Mathematical Biosciences and Engineering
cerebrovascular resistance
subset selection
systemic resistance
parameter estimation
sensitivityanalysis
cardiovascular modeling
title Estimation and identification of parameters in a lumpedcerebrovascular model
title_full Estimation and identification of parameters in a lumpedcerebrovascular model
title_fullStr Estimation and identification of parameters in a lumpedcerebrovascular model
title_full_unstemmed Estimation and identification of parameters in a lumpedcerebrovascular model
title_short Estimation and identification of parameters in a lumpedcerebrovascular model
title_sort estimation and identification of parameters in a lumpedcerebrovascular model
topic cerebrovascular resistance
subset selection
systemic resistance
parameter estimation
sensitivityanalysis
cardiovascular modeling
url https://www.aimspress.com/article/doi/10.3934/mbe.2009.6.93
work_keys_str_mv AT scottrpope estimationandidentificationofparametersinalumpedcerebrovascularmodel
AT lauramellwein estimationandidentificationofparametersinalumpedcerebrovascularmodel
AT cheryllzapata estimationandidentificationofparametersinalumpedcerebrovascularmodel
AT veranovak estimationandidentificationofparametersinalumpedcerebrovascularmodel
AT ctkelley estimationandidentificationofparametersinalumpedcerebrovascularmodel
AT mettesolufsen estimationandidentificationofparametersinalumpedcerebrovascularmodel