Innovative Bike-Sharing in China: Solving Faulty Bike-Sharing Recycling Problem
In China, based on the mobile Internet technology and global positioning system (GPS), innovative bike-sharing is different from traditional bike-sharing system with docking station, for its flexibility and convenience. However, innovative bike-sharing system faces operational challenges, especially...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Journal of Advanced Transportation |
Online Access: | http://dx.doi.org/10.1155/2018/4941029 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In China, based on the mobile Internet technology and global positioning system (GPS), innovative bike-sharing is different from traditional bike-sharing system with docking station, for its flexibility and convenience. However, innovative bike-sharing system faces operational challenges, especially in faulty bike-sharing recycling (FBSR) problem. In this paper, a framework is designed based on the optimization method to solve the FBSR problem so that it can minimize the total recycling costs by taking the route optimization and loading capacity ratio as constraints. The FBSR method combines the K-means method for clustering faulty bike-sharing with planning recycling route for operational decisions. Moreover, CPLEX solver is used to obtain the desired result of the FBSR model. Finally, a case study based on a certain area in Beijing, China, is used to verify the validity and applicability of the model. The results show that the value of loading capacity ratio and the number of clustering points greatly affect the results of FBSR problem. Four vehicles are designated to execute FBSR tasks required by different clustering points. This study is of considerable significance for the bike-sharing promotion in the last-mile situation to the real problems arising in the initial period. |
---|---|
ISSN: | 0197-6729 2042-3195 |