Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales

We study a general second-order m-point boundary value problems for nonlinear singular impulsive dynamic equations on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+q(t)f(t,u(t))=0,t∈(0,1),t≠tk,uΔ(tk+)=uΔ(tk)-Ik(u(tk)), and k=1,2,…,n,u(ρ(0))=0,u(σ(1))=∑i=1m-2αiu(ηi)‍. The existence and uniqueness of positive...

Full description

Saved in:
Bibliographic Details
Main Authors: Xue Xu, Yong Wang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/867018
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832565143649648640
author Xue Xu
Yong Wang
author_facet Xue Xu
Yong Wang
author_sort Xue Xu
collection DOAJ
description We study a general second-order m-point boundary value problems for nonlinear singular impulsive dynamic equations on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+q(t)f(t,u(t))=0,t∈(0,1),t≠tk,uΔ(tk+)=uΔ(tk)-Ik(u(tk)), and k=1,2,…,n,u(ρ(0))=0,u(σ(1))=∑i=1m-2αiu(ηi)‍. The existence and uniqueness of positive solutions are established by using the mixed monotone fixed point theorem on cone and Krasnosel’skii fixed point theorem. In this paper, the function items may be singular in its dependent variable. We present examples to illustrate our results.
format Article
id doaj-art-13e9198a97a14d2cb5ebf4ec5f30a14f
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-13e9198a97a14d2cb5ebf4ec5f30a14f2025-02-03T01:09:07ZengWileyJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/867018867018Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time ScalesXue Xu0Yong Wang1Department of Mathematics, Harbin Institute of Technology, Harbin 150001, ChinaDepartment of Mathematics, Harbin Institute of Technology, Harbin 150001, ChinaWe study a general second-order m-point boundary value problems for nonlinear singular impulsive dynamic equations on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+q(t)f(t,u(t))=0,t∈(0,1),t≠tk,uΔ(tk+)=uΔ(tk)-Ik(u(tk)), and k=1,2,…,n,u(ρ(0))=0,u(σ(1))=∑i=1m-2αiu(ηi)‍. The existence and uniqueness of positive solutions are established by using the mixed monotone fixed point theorem on cone and Krasnosel’skii fixed point theorem. In this paper, the function items may be singular in its dependent variable. We present examples to illustrate our results.http://dx.doi.org/10.1155/2014/867018
spellingShingle Xue Xu
Yong Wang
Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales
Journal of Applied Mathematics
title Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales
title_full Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales
title_fullStr Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales
title_full_unstemmed Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales
title_short Solutions of Second-Order m-Point Boundary Value Problems for Impulsive Dynamic Equations on Time Scales
title_sort solutions of second order m point boundary value problems for impulsive dynamic equations on time scales
url http://dx.doi.org/10.1155/2014/867018
work_keys_str_mv AT xuexu solutionsofsecondordermpointboundaryvalueproblemsforimpulsivedynamicequationsontimescales
AT yongwang solutionsofsecondordermpointboundaryvalueproblemsforimpulsivedynamicequationsontimescales